674 research outputs found

    Photo Lewis acid generators: photorelease of B(C6F5)3 and applications to catalysis

    Get PDF
    A series of molecules capable of releasing of the strong organometallic Lewis acid B(C6F5)3 upon exposure to 254 nm light have been developed. These photo Lewis acid generators (PhLAGs) can now serve as photoinitiators for several important B(C6F5)3-catalyzed reactions. Herein is described the synthesis of the triphenylsulfonium and diphenyliodonium salts of carbamato- and hydridoborates, their establishment as PhLAGs, and studies aimed at defining the mechanism of borane release. Factors affecting these photolytic reactions and the application of this concept to photoinduced hydrosilylation reactions and construction of siloxane scaffolds are also discusse

    Photo Lewis acid generators: photorelease of B(C6F5)3 and applications to catalysis

    Get PDF
    A series of molecules capable of releasing of the strong organometallic Lewis acid B(C6F5)3 upon exposure to 254 nm light have been developed. These photo Lewis acid generators (PhLAGs) can now serve as photoinitiators for several important B(C6F5)3-catalyzed reactions. Herein is described the synthesis of the triphenylsulfonium and diphenyliodonium salts of carbamato- and hydridoborates, their establishment as PhLAGs, and studies aimed at defining the mechanism of borane release. Factors affecting these photolytic reactions and the application of this concept to photoinduced hydrosilylation reactions and construction of siloxane scaffolds are also discusse

    Investigations of excitation energy transfer and intramolecular interactions in a nitrogen corded distrylbenzene dendrimer system.

    Get PDF
    The photophysics of an amino-styrylbenzene dendrimer (A-DSB) system is probed by time-resolved and steady state luminescence spectroscopy. For two different generations of this dendrimer, steady state absorption, emission, and photoluminescence excitation spectra are reported and show that the efficiency of energy transfer from the dendrons to the core is very close to 100%. Ultrafast time-resolved fluorescence measurements at a range of excitation and detection wavelengths suggest rapid (and hence efficient) energy transfer from the dendron to the core. Ultrafast fluorescence anisotropy decay for different dendrimer generations is described in order to probe the energy migration processes. A femtosecond time-scale fluorescence depolarization was observed with the zero and second generation dendrimers. Energy transfer process from the dendrons to the core can be described by a Förster mechanism (hopping dynamics) while the interbranch interaction in A-DSB core was found to be very strong indicating the crossover to exciton dynamics

    Who I Am: The Meaning of Early Adolescents’ Most Valued Activities and Relationships, and Implications for Self-Concept Research

    Get PDF
    Self-concept research in early adolescence typically measures young people’s self-perceptions of competence in specific, adult-defined domains. However, studies have rarely explored young people’s own views of valued self-concept factors and their meanings. For two major self domains, the active and the social self, this mixed-methods study identified factors valued most by 526 young people from socioeconomically diverse backgrounds in Ireland (10-12 years), and explored the meanings associated with these in a stratified subsample (n = 99). Findings indicate that self-concept scales for early adolescence omit active and social self factors and meanings valued by young people, raising questions about content validity of scales in these domains. Findings also suggest scales may under-represent girls’ active and social selves; focus too much on some school-based competencies; and, in omitting intrinsically salient self domains and meanings, may focus more on contingent (extrinsic) rather than true (intrinsic) self-esteem

    Eliashberg-type equations for correlated superconductors

    Full text link
    The derivation of the Eliashberg -- type equations for a superconductor with strong correlations and electron--phonon interaction has been presented. The proper account of short range Coulomb interactions results in a strongly anisotropic equations. Possible symmetries of the order parameter include s, p and d wave. We found the carrier concentration dependence of the coupling constants corresponding to these symmetries. At low hole doping the d-wave component is the largest one.Comment: RevTeX, 18 pages, 5 ps figures added at the end of source file, to be published in Phys.Rev. B, contact: [email protected]

    A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the OAS1 gene

    Get PDF
    Recently, we reported oligoadenylate synthetase 1 (OAS1) contributed to the risk of Alzheimer's disease, by its enrichment in transcriptional networks expressed by microglia. However, the function of OAS1 within microglia was not known. Using genotyping from 1313 individuals with sporadic Alzheimer's disease and 1234 control individuals, we confirm the OAS1 variant, rs1131454, is associated with increased risk for Alzheimer's disease. The same OAS1 locus has been recently associated with severe coronavirus disease 2019 (COVID-19) outcomes, linking risk for both diseases. The single nucleotide polymorphisms rs1131454(A) and rs4766676(T) are associated with Alzheimer's disease, and rs10735079(A) and rs6489867(T) are associated with severe COVID-19, where the risk alleles are linked with decreased OAS1 expression. Analysing single-cell RNA-sequencing data of myeloid cells from Alzheimer's disease and COVID-19 patients, we identify co-expression networks containing interferon (IFN)-responsive genes, including OAS1, which are significantly upregulated with age and both diseases. In human induced pluripotent stem cell-derived microglia with lowered OAS1 expression, we show exaggerated production of TNF-α with IFN-γ stimulation, indicating OAS1 is required to limit the pro-inflammatory response of myeloid cells. Collectively, our data support a link between genetic risk for Alzheimer's disease and susceptibility to critical illness with COVID-19 centred on OAS1, a finding with potential implications for future treatments of Alzheimer's disease and COVID-19, and development of biomarkers to track disease progression

    Outcome in patients perceived as receiving excessive care across different ethical climates : a prospective study in 68 intensive care units in Europe and the USA

    Get PDF
    Whether the quality of the ethical climate in the intensive care unit (ICU) improves the identification of patients receiving excessive care and affects patient outcomes is unknown. In this prospective observational study, perceptions of excessive care (PECs) by clinicians working in 68 ICUs in Europe and the USA were collected daily during a 28-day period. The quality of the ethical climate in the ICUs was assessed via a validated questionnaire. We compared the combined endpoint (death, not at home or poor quality of life at 1 year) of patients with PECs and the time from PECs until written treatment-limitation decisions (TLDs) and death across the four climates defined via cluster analysis. Of the 4747 eligible clinicians, 2992 (63%) evaluated the ethical climate in their ICU. Of the 321 and 623 patients not admitted for monitoring only in ICUs with a good (n = 12, 18%) and poor (n = 24, 35%) climate, 36 (11%) and 74 (12%), respectively were identified with PECs by at least two clinicians. Of the 35 and 71 identified patients with an available combined endpoint, 100% (95% CI 90.0-1.00) and 85.9% (75.4-92.0) (P = 0.02) attained that endpoint. The risk of death (HR 1.88, 95% CI 1.20-2.92) or receiving a written TLD (HR 2.32, CI 1.11-4.85) in patients with PECs by at least two clinicians was higher in ICUs with a good climate than in those with a poor one. The differences between ICUs with an average climate, with (n = 12, 18%) or without (n = 20, 29%) nursing involvement at the end of life, and ICUs with a poor climate were less obvious but still in favour of the former. Enhancing the quality of the ethical climate in the ICU may improve both the identification of patients receiving excessive care and the decision-making process at the end of life

    Outcome in patients perceived as receiving excessive care across different ethical climates: a prospective study in 68 intensive care units in Europe and the USA.

    Get PDF
    PURPOSE: Whether the quality of the ethical climate in the intensive care unit (ICU) improves the identification of patients receiving excessive care and affects patient outcomes is unknown. METHODS: In this prospective observational study, perceptions of excessive care (PECs) by clinicians working in 68 ICUs in Europe and the USA were collected daily during a 28-day period. The quality of the ethical climate in the ICUs was assessed via a validated questionnaire. We compared the combined endpoint (death, not at home or poor quality of life at 1 year) of patients with PECs and the time from PECs until written treatment-limitation decisions (TLDs) and death across the four climates defined via cluster analysis. RESULTS: Of the 4747 eligible clinicians, 2992 (63%) evaluated the ethical climate in their ICU. Of the 321 and 623 patients not admitted for monitoring only in ICUs with a good (n = 12, 18%) and poor (n = 24, 35%) climate, 36 (11%) and 74 (12%), respectively were identified with PECs by at least two clinicians. Of the 35 and 71 identified patients with an available combined endpoint, 100% (95% CI 90.0-1.00) and 85.9% (75.4-92.0) (P = 0.02) attained that endpoint. The risk of death (HR 1.88, 95% CI 1.20-2.92) or receiving a written TLD (HR 2.32, CI 1.11-4.85) in patients with PECs by at least two clinicians was higher in ICUs with a good climate than in those with a poor one. The differences between ICUs with an average climate, with (n = 12, 18%) or without (n = 20, 29%) nursing involvement at the end of life, and ICUs with a poor climate were less obvious but still in favour of the former. CONCLUSION: Enhancing the quality of the ethical climate in the ICU may improve both the identification of patients receiving excessive care and the decision-making process at the end of life

    Molecular fluorescence above metallic gratings

    Get PDF
    P. Andrew and William L. Barnes, Physical Review B, Vol. 64, article 125405 (2001). "Copyright © 2001 by the American Physical Society."We present measurements of the fluorescence of emitters located in close proximity (d<λ) to metallic grating surfaces. By measuring both the spontaneous emission lifetime and angle-dependent radiation pattern of a monolayer of dye molecules as a function of their separation from planar and periodically corrugated mirrors of increasing modulation depth, we are able to examine the effect of varying the surface profile on the emission process. Both the distance dependence of the lifetime and the spatial distribution of the emitted light are significantly changed upon the introduction of a corrugation, quite apart from the appearance of the familiar Bragg-scattered bound-mode features. It is postulated that these perturbations arise from the interference of the grating scattered dipole fields with the usual upward propagating and reflected fields. In addition, the measurement of nonexponential decay transients for the deepest gratings examined provide evidence for the existence of optically dissimilar dipole positions above the grating surface

    Optoelectronic Studies of Methylammonium Lead Iodide Perovskite Solar Cells with Mesoporous TiO2: Separation of Electronic and Chemical Charge Storage, Understanding Two Recombination Lifetimes, and the Evolution of Band Offsets during J-V Hysteresis

    Get PDF
    Methylammonium lead iodide (MAPI) cells of the design FTO/sTiO2/ mpTiO2/MAPI/Spiro-OMeTAD/Au, where FTO is fluorine-doped tin oxide, sTiO2 indicates solid-TiO2, and mpTiO2 is mesoporous TiO2, are studied using transient photovoltage (TPV), differential capacitance, charge extraction, current interrupt, and chronophotoamperometry. We show that in mpTiO2/MAPI cells there are two kinds of extractable charge stored under operation: a capacitive electronic charge (&sim;0.2 &mu;C/ cm2) and another, larger charge (40 &mu;C/cm2), possibly related to mobile ions. Transient photovoltage decays are strongly double exponential with two time constants that differ by a factor of &sim;5, independent of bias light intensity. The fast decay (&sim;1 &mu;s at 1 sun) is assigned to the predominant charge recombination pathway in the cell. We examine and reject the possibility that the fast decay is due to ferroelectric relaxation or to the bulk photovoltaic effect. Like many MAPI solar cells, the studied cells show significant J&minus;V hysteresis. Capacitance vs open circuit voltage (Voc) data indicate that the hysteresis involves a change in internal potential gradients, likely a shift in band offset at the TiO2/MAPI interface. The TPV results show that the Voc hysteresis is not due to a change in recombination rate constant. Calculation of recombination flux at Voc suggests that the hysteresis is also not due to an increase in charge separation efficiency and that charge generation is not a function of applied bias. We also show that the J&minus;V hysteresis is not a light driven effect but is caused by exposure to electrical bias, light or dark.</div
    corecore