70 research outputs found
Surfactant use based on the oxygenation response to lung recruitment during HFOV in VLBW infants
Purpose: Early lung recruitment (ELR) during high-frequency oscillatory ventilation (HFOV) in combination with prophylactic surfactant use has been reported to reduce mortality, improve respiratory outcomes, and reduce the need for repeated surfactant dosing, suggesting that surfactant might be used more selectively in very low birth weight (VLBW) infants on HFOV than generally recommended. We report our first experience from such a selective early rescue use of surfactant in VLBW infants on HFOV. Methods: After a deliberate ELR maneuver and "optimal” continuous distending pressure (CDP) finding during HFOV, used as primary ventilation mode for VLBW infants with respiratory distress syndrome (RDS), surfactant was only given when an unsatisfactory oxygenation response to lung recruitment (as defined by CDP×FiO2>5) was observed. Results: Out of 144 VLBW infants on HFOV, 84 (58.3%) received surfactant and 60 (41.7%) did not. Duration of required oxygen supplementation (37.4±44.9 vs. 46.2±35.4days; P=0.031) and respiratory support (i.e., n-CPAP and/or mechanical ventilation; 22.3±19.3 vs. 38.2±24.3days; P=0.001) was shorter for infants who did not receive surfactant than for those who did. The incidence and severity of bronchopulmonary dysplasia was similar in both groups, and there was no difference in survival rates between groups. Subgroup analysis for infants of less than 28weeks of gestation revealed similar results. Conclusions: First intention HFOV combined with an early attempt at lung volume optimization might allow surfactants to be used more selectively (in relation to disease severity) in VLBW infants presenting with RDS at birth without negatively influencing the outcom
Mild-stretch mechanical ventilation upregulates toll-like receptor 2 and sensitizes the lung to bacterial lipopeptide
INTRODUCTION: Mechanical ventilation (MV) could prime the lung toward an inflammatory response if exposed to another insult such as bacterial invasion. The underlying mechanisms are not so far clear. Toll-like receptors (TLRs) allow the host to recognize selectively bacterial pathogens and in turn to trigger an immune response. We therefore hypothesized that MV modulates TLR2 expression and in turn modifies responsiveness to agonists such as bacterial lipopeptide (BLP). METHOD: Both in vitro and in vivo experiments were conducted. First, TLR2 expression and protein were measured in the A549 pulmonary epithelial cell line submitted to 8-hour cyclic stretch (20% elongation; 20/minute rate). After a 24-hour period of cyclic stretch, the inflammatory response of the A549 cells to the synthetic BLP, Pam(3)CSK(4), was tested after 8 hours of exposure. In a second set of experiments, healthy anesthetized and paralyzed rabbits were submitted to 8-hour MV (tidal volume = 12 ml/kg, zero end-expiratory pressure; FIO(2 )= 50%; respiratory rate = 20/minute) before being sacrificed for TLR2 lung expression assessment. The lung inflammatory response to BLP was then tested in animals submitted to 24-hour MV before being sacrificed 8 hours after the tracheal instillation of Pam(3)CSK(4). RESULTS: Cyclic stretch of human pulmonary epithelial cell lines increased both TLR2 mRNA and protein expression. Cells submitted to cyclic stretch also increased IL-6 and IL-8 secretion in response to Pam(3)CSK(4), a classical TLR2 ligand. A mild-stretch MV protocol induced a 60-fold increase of TLR2 mRNA expression in lung tissue when compared with spontaneously breathing controls. Moreover, the combination of MV and airway exposure to Pam(3)CSK(4 )acted synergistically in causing lung inflammation and injury. CONCLUSIONS: Mild-stretch MV increases lung expression of TLR2 and sensitizes the lung to bacterial TLR2 ligands. This may account for the propensity of mechanically ventilated patients to develop acute lung injury in the context of airway bacterial colonization/infection
Value of brain natriuretic peptide in the perioperative follow-up of children with valvular disease
Objective: To characterize N-terminal pro-brain natriuretic peptide (N-proBNP) and troponin I (TnI) profile following mitral and/or aortic valve surgery and to evaluate correlations with echocardiography measures and outcome criteria. Design and setting: Prospective cross-controlled study in auniversity children's hospital. Patients: Twenty children with acquired valvular disease requiring valvular surgery. Interventions: We prospectively studied clinical, biochemical, and echocardiographic characteristics at baseline and 6, 12, 24 h and 3-4 weeks postoperatively. Results: TnI peaked 6 h after surgery and remained elevated during the first 24 h. N-proBNP was significantly lower 3-4 weeks after surgery than during the perioperative period. Overall, N-proBNP was correlated with the Pediatric Heart Failure Index, left ventricle shortening fraction, left atrium to aorta ratio, left ventricle mass index, end-systolic wall stress, and with outcome measures such as inotropic score, duration of inotropic support, and ICU length of stay. Preoperative N-proBNP was significantly more elevated in patients with complicated outcome than in patients with uneventful postoperative course. Conclusions: In pediatric valvular patients, perioperative N-proBNP is apromising risk stratification predicting factor. It is correlated with evolutive echocardiographic measures, need for inotropic support, and ICU length of sta
Genetic and Functional Characterization of an MCR-3-Like Enzyme-Producing Escherichia coli Isolate Recovered from Swine in Brazil
A collection of 126 pigs was screened for carriage of colistin-resistant Enterobacteriaceae in a farm in Minas Gerais, Brazil. Out of this collection, eight colistin-resistant Escherichia coli isolates were recovered, including one from Minas Gerais State producing a new MCR-3 variant (MCR-3.12). Analysis of the lipopolysaccharide revealed that MCR-3.12 had a function similar to that of MCR-1 and MCR-2 as a result of the addition of a phosphoethanolamine group to the lipid A moiety. Genetic analysis showed that the mcr-3.12 gene was carried by an IncA/C2 plasmid and was embedded in an original genetic environment. This study reports the occurrence of the MCR-3-like determinant in South America and is the first to demonstrate the functionality of this group of enzymes as a phosphoethanolamine transferase
Maternal malaria but not schistosomiasis is associated with a higher risk of febrile infection in infant during the first 3 months of life: A mother-child cohort in Benin.
BACKGROUND: Malaria and schistosomiasis represent two of the most prevalent and disabling parasitic infections in developing countries. Few studies have evaluated the effect of maternal schistosomiasis and malaria in the peri-conceptional period on infant's risk of infection. METHODS: In Benin, women were followed from the preconception period until delivery. Subsequently, their children were followed from birth to 3 months of age. Pre-pregnancy malaria, malaria in pregnancy (MiP)-determined monthly using a thick blood smear-and urinary schistosomiasis-determined once before pregnancy and once at delivery using urine filtration-were the main maternal exposures. Infant's febrile infection (fever with respiratory, gastrointestinal and/or cutaneous clinical signs anytime during follow-up) was the main outcome. In a secondary analysis, we checked the relation of malaria and schistosomiasis with infant's hemoglobin (Hb) concentration. Both effects were separately assessed using logistic/mixed linear regression models. RESULTS: The prevalence of MiP was 35.7% with 10.8% occurring during the 1st trimester, and the prevalence of schistosomiasis was 21.8%. From birth to 3 months, 25.3% of infants had at least one episode of febrile infection. In multivariate analysis, MiP, particularly malaria in the 1st trimester, was significantly associated with a higher risk of infant's febrile infection (aOR = 4.99 [1.1; 22.6], p = 0.03). In secondary results, pre-pregnancy malaria and schistosomiasis were significantly associated with a lower infant's Hb concentration during the first 3 months. CONCLUSION: We evidenced the deleterious effect of maternal parasitic infections on infant's health. Our results argue in favor of the implementation of preventive strategies as early as in the peri-conception
Poor maternal anthropometric status before conception is associated with a deleterious infant growth during the first year of life: a longitudinal preconceptional cohort.
BACKGROUND: According to the Developmental Origins of Health and Diseases concept, exposures in the preconception period may be critical. For the first time, we evaluated the effect of preconception poor anthropometric status on infant's growth in sub-Saharan Africa. METHODS: A mother-child cohort was followed prospectively from preconception to 1 year old in Benin. Maternal anthropometric status was assessed by prepregnancy body mass index (BMI), approximated by BMI at the first antenatal visit before 7 weeks' gestation, and gestational weight gain (GWG). BMI was categorized as underweight, normal, overweight, and obesity according to World Health Organization standards. GWG was categorized as low (12 kg). In infant, stunting and wasting were defined as length-for-age and weight-for-length z scores less than -2 SD, respectively. We evaluated the association between BMI/GWG and infant's weight and length at birth and during the first year of life, as well as with stunting and wasting at 12 months using mixed linear and logistic regression models. RESULTS: In multivariate, preconceptional underweight was associated with a lower infant's weight at birth and during the first year (-164 g; 95% CI, -307 to -22; and -342 g; 95% CI, -624 to -61, respectively) and with a higher risk of stunting at 12 months (adjusted odds ratio [aOR] = 3.98; 95% CI, 1.01-15.85). Furthermore, preconceptional obesity and a high GWG were associated with a higher weight and length at birth and during the first year. CONCLUSION: Underweight and obesity before conception as well as GWG were associated with infant's growth. These results argue for preventive interventions starting as early as the preconception period to support child long-term health
Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: The CDH EURO Consortium Consensus - 2015 Update
In 2010, the congenital diaphragmatic hernia (CDH) EURO Consortium published a standardized neonatal treatment protocol. Five years later, the number of participating centers has been raised from 13 to 22. In this article the relevant literature is updated, and consensus has been reached between the members of the CDH EURO Consortium. Key updated recommendations are: (1) planned delivery after a gestational age of 39 weeks in a high-volume tertiary center; (2) neuromuscular blocking agents to be avoided during initial treatment in the delivery room; (3) adapt treatment to reach a preductal saturation of between 80 and 95% and postductal saturation >70%; (4) target PaCO2 to be between 50 and 70 mm Hg; (5) conventional mechanical ventilation to be the optimal initial ventilation strategy, and (6) intravenous sildenafil to be considered in CDH patients with severe pulmonary hypertension. This article represents the current opinion of all consortium members in Europe for the optimal neonatal treatment of CDH
Interleukin-7 Influences FOXP3+CD4+ Regulatory T Cells Peripheral Homeostasis
Mechanisms governing peripheral CD4+ FOXP3+ regulatory T cells (Treg) survival and homeostasis are multiple suggesting tight and complex regulation of regulatory T cells homeostasis. Some specific factors, such as TGF-β, interleukin-2 (IL-2) and B7 costimulatory molecules have been identified as essentials for maintenance of the peripheral Treg compartment. Conversely, Treg dependency upon classical T cell homeostatic factors such as IL-7 is still unclear. In this work, we formally investigated the role of IL-7 in Treg homeostasis in vivo in murine models. We demonstrated that IL-7 availability regulated the size of peripheral Treg cell pool and thus paralleled the impact of IL-7 on conventional T cell pool. Moreover, we showed that IL-7 administration increased Treg cell numbers by inducing thymic-independent Treg peripheral expansion. Importantly the impact of IL-7 on Treg expansion was detected whether conventional T cells were present or absent as IL-7 directly participates to the peripheral expansion of Treg after adoptive transfer into lymphopenic hosts. Our results definitively identify IL-7 as a central factor contributing to Treg peripheral homeostasis, thus reassembling Treg to other T cell subsets in respect of their need for IL-7 for their peripheral maintenance
Innate Immune Deficiency of Extremely Premature Neonates Can Be Reversed by Interferon-γ
Background: Bacterial sepsis is a major threat in neonates born prematurely, and is associated with elevated morbidity and mortality. Little is known on the innate immune response to bacteria among extremely premature infants. Methodology/Principal Findings: We compared innate immune functions to bacteria commonly causing sepsis in 21 infants of less than 28 wks of gestational age, 24 infants born between 28 and 32 wks of gestational age, 25 term newborns and 20 healthy adults. Levels of surface expression of innate immune receptors (CD14, TLR2, TLR4, and MD-2) for Grampositive and Gram-negative bacteria were measured in cord blood leukocytes at the time of birth. The cytokine response to bacteria of those leukocytes as well as plasma-dependent opsonophagocytosis of bacteria by target leukocytes was also measured in the presence or absence of interferon-c. Leukocytes from extremely premature infants expressed very low levels of receptors important for bacterial recognition. Leukocyte inflammatory responses to bacteria and opsonophagocytic activity of plasma from premature infants were also severely impaired compared to term newborns or adults. These innate immune defects could be corrected when blood from premature infants was incubated ex vivo 12 hrs with interferon-c. Conclusion/Significance: Premature infants display markedly impaired innate immune functions, which likely account for their propensity to develop bacterial sepsis during the neonatal period. The fetal innate immune response progressivel
Cellular metabolism constrains innate immune responses in early human ontogeny
Pathogen immune responses are profoundly attenuated in fetuses and premature infants, yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic, metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation display perturbations in PPAR-γ-regulated metabolic pathways, limited glycolytic capacity and reduced ribosomal activity. These metabolic changes are linked to a lack of translation of most cytokines and of MALT1 signalosome genes essential to respond to the neonatal pathogen Candida. In contrast, they have little impact on house-keeping phagocytosis functions. Transcriptome analyses further indicate a role for mTOR and its putative negative regulator DNA Damage Inducible Transcript 4-Like in regulating these metabolic constraints. Our results provide a molecular basis for the broad susceptibility to multiple pathogens in these infants, and suggest that the fetal immune system is metabolically programmed to avoid energetically costly, dispensable and potentially harmful immune responses during ontogeny
- …