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A collection of 126 pigs were screened for carriage of colistin-resistant

Enterobacteriaceae in a farm in Minas Gerais, Brazil. Out of this collection, eigth

colistin-resistant Escherichia coli isolates were recovered, including one from Minas

Gerais State, producing a new MCR-3 variant (MCR-3.12). Analysis of the

lipopolysaccharide revealed that MCR-3.12 had a similar function as MCR-1 and MCR-

2 by adding a phosphoethanolamine group to the lipid A. Genetic analysis showed that

the mcr-3.12 gene was carried by an IncA/C; plasmid and was embedded in an original

genetic environment. This study reports the occurrence of the MCR-3-like determinant

in South America and firstly demonstrates the functionality of this group of enzymes as

a phosphoethanolamine transferase.
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INTRODUCTION

The increasing occurrence of colistin-resistant Enterobacteriaceae is of great concern since

colistin represents one of the last-resort treatments for infections caused by carbapenem-

resistant Enterobacteriaceae (CRE). In addition to chromosomally-encoded resistance

mechanisms corresponding to mutations or deletions in genes involved in the biosynthesis of

the lipopolysaccharide (LPS), acquired resistance through horizontal gene transfer has been

recently described (1). Five different plasmid-mediated colistin resistance genes have been

identified so far in Enterobacteriaceae, including mcr-1, mer-2, mer-3, mer-4 and mer-5 (2-6).

They code for enzymes that modify the lipid A moiety of the LPS of Gram-negative bacteria

and consequently conferring resistance to polymyxin B and colistin (1). To date, only MCR-1

and MCR-2 have been shown to function as phosphoethanolamine transferases (7). The mcr-1

and mcr-2 genes likely originate from Moraxella species (8), with Moraxella pluranimalium

being the progenitor of mcr-2 (9), Aeromonas spp. that of mcr-3-like genes (4), and

Shewanella spp. that of mcr-4-like genes (5). The origin of the newly discovered mcr-5 gene

remains unknown (6). The high prevalence of MCR-1-producing E. coli isolates in food-

producing animals, and therefore the high rate of colistin-resistant isolates may be explained

by the constant use of colistin in veterinary medicine, in particular in livestock for the
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treatment of poultry, swine and cattle (1). To date, six mcr-3 variants have been reported since

the discovery of mcr-3.1 in June 2017, identified from an Echerichia coli isolate from a

healthy pig in China (4) and in a Salmonella isolate from human infections in Denmark (10).

The mcr-3.2 variant was identified in E. coli from cattle in Spain (11). The mcr-3.3 to -3.9

variants were identified in Aeromonas spp. (12-15), and the mcr-3.10 in E. coli from duck in

China (15). Finally, the mcr-3.11 gene was from an E. coli isolate recovered from chicken in

China (unpublished, Genbank accession number MG489958.1). Even if Aeromonas spp. was

described as the progenitor of the mcr-3 genes, this gene might also be found as an acquired

determinant in that species (13).

Here we report a novel mcr-3 variant detected in an E. coli isolate recovered from a post-

weaning diarrhea of a pig that was previously treated by colistin in Brazil.

RESULTS

Characterization of a new mcr-3 variant and susceptibility testing. Out of the 126

pig samples, eight samples were found to contain colistin-resistant E. coli isolates. All the

animals received treatment including colistin for 15 days after the weaning period. Out of the

8 colistin-resistant E. coli isolates, only a single isolate (I112) was positive by PCR for the

mcr-3 gene. The other colistin-resistant E. coli isolates remaining negative for the other mcr-
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like genes. Sequencing of the PCR products revealed that the mcr-3-like gene corresponded to

a new variant named mcr-3.12 (Genbank accession number: MG564491) encoding for a

MCR-3.12 enzyme sharing 97% of amino-acid identity with the original MCR-3 variant and

between 97% and 99% of amino-acid identity with the other MCR-3-like variants (Figure 1).

Isolate 1112 showed resistance to broad-spectrum cephalosporins, tetracycline,

chloramphenicol, florfenicol, nalidixic acid, sulfonamides, sulfomethoxazole/trimethoprim

and kanamycin. It was found positive with the Rapid Polymyxin NP test and showed an MIC

of colistin at 4 pg/ml using broth microdilution method. MLST analysis showed that isolate

1112 belonged to the ST641 and to the phylogroup A. Analysis with Serotypefinderl.l

indicated that it belonged to the O160:H25 serotype. Phylogenetic analysis of the known mcr-

3 showed a significative diversity among the variants. Three major subgroups could be

identified including, (i) MCR-3.5, MCR-3.6 and MCR-3.8, (ii)) MCR-3.4 and the MCR-3.11,

(i) MCR-3.1, MCR-3.2, MCR-3.3, MCR-3.7 and MCR-3.11, respectively. The MCR-3.9

and MCR-3.10 enzymes were found to be both close to MCR-3.12 and MCR-3.1 variants

(Figure 1).

MCR-3 is a phosphoethanolamine transferase conferring resistance to colistin.

Mass spectrometry analysis of the LPS showed that unlike the J53 negative control showing a
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single m/z 1798 peak corresponding to the bis-phosphorylated hexa acylated lipid A, the

MCR-1 and MCR-3 producers showed an identical additional peak at m/z 1921 (Am/z 123)

corresponding to an addition of a phosphoethanolamine (PEtN) groupment to the lipid A as it

was previously described (7, 16) (Figure 2). Induction of the pBADy-mcr-3-like plasmid

allowed to obtain an MIC of colistin at 4 pg/ml whereas the non-induced clone presented an

MIC at 0.03 pg/ml showing that the production of MCR-3-12 conferred a 130-fold increase of

colistin MIC. Altogether, these results showed the phosphoethanolamine transferase activity

of the MCR-3.12 enzyme and its impact on the colistin susceptibility.

Plasmid analysis. Mating-out assays were successful with E. coli J53 and Klebsiella

pneumoniae CIP53153 as recipients, but also with Aeromonas punctata CIP102629,

highlighting its broad host range property. By contrast, no transconjugant was obtained using

P. aeruginosa PaOl as recipient. Conjugation followed by PCR showed that mcr-3.12 was

located onto a conjugative plasmid named pl12. That latter plasmid encoded resistance to

tetracyclines, sulfonamides, chloramphenicol and florfenicol. PBRT analysis showed that

plasmid p112 belonged to the IncA/C, incompatibility group. Kieser extraction followed by

gel electrophoresis identified its size to be ca. 140-kb in size. MICs of colistin of the E. coli

and K. pneumoniae transconjugants were at 4 and 8 pg/ml, respectively, being therefore
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categorized as resistant according to the EUCAST breakpoint (original MICs of the bacterial

hosts being at 0.25 and 0.12 pg/ml, respectively) (http:// www.eucast.org). Interestingly, MICs

of colistin of the A. punctata transconjugant was at 16 pg/ml (original MIC at 0.12 pg/ml),

indicating a very significant impact of MCR-3.12 on colistin susceptibility in that species.

Bioinformatic analysis and genetic context of the mcr-3-12 gene. Whole genome

sequencing of E. coli I112 data identified a series of resistance determinants including genes

encoding resistance to B-lactams (blargm.is and blacrx.m.s genes), aminoglycosides (aph/3’]-

la, strA and strB), tetracyclines (tetA), phenicols (catAl and floR), sulphonamides (sul2) and

trimethoprim (dfr18). The mcr-3-like gene was found in association with a gene encoding for

a diacylglycerol kinase dgkA-like sharing 98% of nucleotide identity with the dgkA gene

identified in association with the first mcr-3 described on plasmid pWJ1 (4).

The mcr-3.12 gene was located between two insertion sequences belonging to the IS66

and 1S30 families, respectively (Figure 3). Interestingly, 90-bp after the end of the inverted

repeat right (IRR) of the IS30-like, an IRL-like of the IS66 was detected, sharing 100% of

nucleotide identity with the first 24-nt of the IRL of 1S66 (Figure 3). The presence of this

IRL-like downstream the 1S30-like could form a putative transposon with the IS66.
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Further analysis showed that this putative transposon was embedded in a longer structure that

was inserted between nucleotides 1,049 and 1,050 of a DNA methyltransferase gene located

on the IncA/C, backbone. This structure was 20,376-bp long and is represented in Figure 3F.

It could be defined into three different regions, (i) a 5° region characterized by a 7,666-bp

region with a GC content of 39% containing three putative open reading frames including two

encoding for putative site-specific integrases, (ii) the putative transposon containing the mcr-3

variant and three ORFs (o, B and y) presenting a GC content of 49% and (iii) a 3’ region of

526-bp with a similar %GC as the first 7,666-bp region (Figure 3F). The ORF a, B and y

encoded for a reverse transcriptase, a transcriptional regulator and a diguanylate cyclase,

respectively. Their products showed strong amino acid identity (98%) with putative proteins

from Aeromonas dhakensis.

DISCUSSION

We report here the identification of a novel variant of the mcr-3 gene, detected in an E.

coli isolate recovered from a pig in Brazil. Interestingly, previous studies also described

MCR-3 producers recovered from animal samples (11, 13), suggesting the same link between

animal and colistin resistance as it has been established for the mcr-1gene. The pigs screened

in this study were treated previously with colistin for fifteen days after the weaning period.
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This suggests the possible selection of colistin-resistant strain during this period as we showed

in our previous study describing a high prevalence of MCR-1-producers in a pig farm in

Portugal where animals had received colistin (17). There have been many reports of MCR

producers in Brazil, with MCR-1 being the only variant systematically identified. These

isolates were a single Salmonella enterica serotype Typhymurium was recovered from retail

meat (18), E. coli isolates recovered from chicken meat (19), from migratory penguins (20),

recovered on public beaches (21), or recovered from patients with bloodstream infections (22,

23). Also, KPC-2-producing E. coli (24), and KPC-2-producing Klebsiella pneumoniae

belonging to ST392 and ST437 (25, 26) were identified. A quite extensive study identified a

series of 59 MCR-1-producing E. coli isolates recovered from humans, chicken, chicken

meat, bovine, turkey, swine and penguin (27). However, we might speculate that most studies

were designed to detect only the mcr-1 gene so far, and few investigating the occurrence of

the most recently-identified other variants.

Isolate 1112 carried a novel mcr-3 variant named mcr-3.12. It belonged to ST641

which was previously found to carry the mcr-1 gene, corresponding to isolates recovered from

pigs in Germany in 2016 (28). It belongs to the phylogroup A of E. coli therefore

corresponding to a commensal strain. Sequence alignment analysis showed that mcr-3.12
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shares 99% of nucleotide identity with a sequence from Aeromonas veronii. This suggests that

this new variant may have originated from that particular species or may have widely

dissiminated as an acquired resistance trait within that species. Noteworthy, we showed here

that the IncA/C,-type plasmid bearing the mcr-3.12 gene could replicate in Aeromonas sp. We

may therefore speculate that such plasmid type might have been involved in the original

spread of mcr-3-like genes from their progenitors to other bacterial species, including

members of the Enterobacteriaceae family.

Induction experiments and analysis of the lipid A of the isolate strongly indicates that

the MCR-3 enzyme confers colistin resistance the same way as MCR-1 and MCR-2 enzymes

by adding a phosphoethanolamine group to the lipid A although this enzyme only shared 45

and 47% of amino-acid identity with MCR-1 and MCR-2, respectively. The fact that MCR-1,

-2, and -3 share similar functions was previously hypothesized through an in-silico protein

structure analysis (4).

The mcr-3 gene was previously described onto IncHI2 and IncX4 plasmids which are

commonly found in association with the mcr-1 and mcr-2 genes. Here, we described the first

IncA/C; plasmid carrying a plasmid-mediated colistin resistance determinant. This plasmid

backbone is commonly identified as a support of many different antibiotic resistance genes.

10
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Here, the determinants tetA, sul2 and floR encoding for resistance to tetracycline,

sulfonamides and phenicols respectively, were also detected on this same plasmid. The broad

host range of this plasmid was demonstrated, by evidencing its ability to replicate not only in

E. coli and K. pneumoniae, but also in A. punctata.

The mcr-3.12 is located into a putative transposon including the IS66 upstream of the

mcr-3 gene and an IS30-like downstream. Interestingly, a 24-nt region found 90-bp

downstream the IS30-like was found identical to the IRL of the IS66. Further experiments will

be conducted to confirm whether IS66 could have played a role in the acquisition of this

phosphoethanolamine transferase gene by a mechanism similar to a one-handed transposition

as it has been described for ISEcpl in the mobilization of blactx.m.15 (29).

The genetic context of the putative mcr-3 transposon is complex and the chronology of

acquisition of this structure into the IncA/C2 plasmid can hardly be explained. One hypothesis

is summarized in the Figure 3. The IS66 might have been involved in the original

mobilization of the mcr-3.12 gene from Aeromonas spp. (Figures 3A-D). Then, a second

mobilization event may have occurred involving an unknown mechanism between the genetic

structure containing the putative integrases (Figure 3E) and the mcr-3-carrying structure

forming an 20,376-bp integron-like genetic complex. Finally, this whole structure may have

11
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been mobilized and inserted between the nt 1,049 and nt 1,050 of a DNA methyl transferase

gene located on an IncA/C; plasmid backbone (Figure 3F). The resulting resistance plasmid is

at the end one of those responsible for the spread of mcr genes among Enterobacteriaceae.

MATERIAL AND METHODS

Bacterial isolate and susceptibility testing. Screening of colistin-resistant isolates

was performed from 126 different pigs in ten swine herds in different states of the state of

Minas Gerais in Brazil, all pigs presenting post-weaning diarrhea. The isolates were initially

tested for colistin resistance using agar dilution methods. All colonies growing on plates

supplemented with >2pg/ml of colistin were confirmed by the commercialized Rapid

Polymyxin NP test (ELITech Microbiology, France) (30) and minimal inhibitory

concentrations (MICs) were determined by broth microdilution method using cation-adjusted

MH broth. Antimicrobial susceptibility testing for other antibiotics families was performed

according to the standard disk diffusion method on Mueller-Hinton (MH) agar plates

following the CLSI recommendations (31).

WGS and molecular analysis. PCR screening for mcr genes was performed using

primers designed to detect all known variants of MCR-3. Primers MCR-3allF (5’-GCA TTT

ATG CTG AAC TGG CG-3’) and MCR-3allR (5’-AGC GGC TTT CTG CTG CAA AC -3°)

12
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were used, and corresponding amplicons were subsequently sequenced (Microsynth, Balgach,

Switzerland). Whole genomic DNA of the MCR-3-positive isolate was extracted with the

Sigma-Aldrich GenElute™ Bacterial Genomic DNA Kit. Genomic libraries were assessed

using the NexteraXT library preparation kit (Illumina Inc., San Diego, CA) and sequencing

was performed using the Illumina MiniSeq system with 300-bp paired-end reads and a

coverage of 50X. Generated FastQ data were compiled and analyzed using the CLC genomic

workbench 7.5.1 (CLC bio, Aarthus, Denmark). Reads were de novo assembled with

automatic bubble and word size and contigs were generated using the mapping mode “map

reads back to contigs” with a minimum contig length of 800 nucleotides.

The resulting contigs were uploaded into the Center for Genomic Epidemiology server

(http://www.genomicepidemiology.org/). Plasmid replicon typing, multilocus sequence

typing, serotype and antimicrobial resistance determinants were determined using

PlasmidFinder 1.3, MLST 1.8, SerotypeFinder 1.1 and ResFinder 3.0, respectively (32-34).

Phylogroup analysis was performed by using the Clermont method (35). Sequence

alignements and construction of phylogenetic trees were performed with the Seaview

alignment tool version 4 (Prabi, La Doua, Lyon, France) (36).

13
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Plasmid analysis was performed using Kieser extraction method (37) followed by gel

electrophoresis in order to estimate the size of the plasmid containing the mcr-3 gene using

the E. coli strain 50192 harboring four plasmids of 154, 66, 48 and 7 kb, respectively, as

plasmid size marker. The determination of the incompatibility group was confirmed by PCR-

based replicon typing (PBRT) (38).

Conjugation experiments were performed using the azide-resistant E. coli J53 strain. In

addition, conjugation were also performed in the temocillin-resistant Pseudomonas

aeruginosa PAOL, in the azide-resistant Klebsiella pneumoniae CIP53153 and in the azide-

resistant Aeromonas punctate CIP102629 recipient strains to test the broad host range of the

plasmid coding for the mcr-3.12 variant. Both donor and recipient strains were cultured in

exponential phase, then mixed on solid LB agar using filters at a 1:10 donor:recipient ratio.

After 5 h of incubation, filters were resuspended in NaCl 0.85% and bacterial mixture were

plated onto agar plates supplemented with colistin (1 pg/ml) and sodium azide (100 pg/ml)

for E. coli or with temocillin (50 pg/ml) and sodium azide (100 pg/ml) for P. aeruginosa.

Since the plasmid bearing the mcr-3.12 gene conferred resistance to tetracycline, conjugations

using K. penumoniae and A. punctata as recipients were attempted using tetracycline (100

pg/ml) and sodium azide (100 pg/ml) as selective molecules. Susceptibility of all

14
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transconjugants to antibiotics was confirmed by antibiogram followed by PCR for the mcr-3-

like gene.

Analysis of the LPS modification. The LPS of E. coli J53 (unmodified lipid A),

TCAf24 (J53-mcr-1 transconjugant) and 112 (MCR-3-like producers) were analyzed by mass

spectrometry (MS). The lipid A was obtained by the hydrolysis of 3 mg of lyophilized

bacteria in 120 pl of isobutyric acid and 1 M ammonium hydroxide (5:3; v:v), heated for 1 h

at 100°C and cooled at 4°C before centrifugation, as previously described (39). The

supernatant was then diluted with water and lyophilized before wash with methanol. The

insoluble lipid A obtained was finally extracted in a chloroform:methanol:water (3:1:0.25,

v:v:v) mixture. MALDI-MS analysis was performed using a PerSeptive Voyager STR (PE

Biosystems, France) time-of-flight mass spectrometer in linear negative ion mode.

Dihydroxybenzoic acid (DHB) at 10 mg/ml in 0.1 M citric acid in chloroform:methanol:water

(3:1.5:0.25;v:v:v) was used as matrix.

Cloning and overexpression of the mcr-3.12 gene. The new mcr-3 variant was

cloned into the arabinose-inducible pBAD,, vector in order to determine the impact of the

expression of the MCR-3-12 phosphoethanolamine transferase on colistin susceptibility.
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Induction of pBADy, vector was performed using MH broth supplemented with L-arabinose

1% as previously described (8).
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Figure Legends

Figure 1. Phylogenetic tree obtained for all the identified MCR-like enzymes including all
MCR-3 variants by distance method using Neighbor-Joining algorythm (SeaView version 4
software). Branch lengths are drawn to scale and are proportional to the number of amino
acids substitutions with 500 bootstrap replications. The distance along the vertical axis has no
significance. Percentage of amino acids identity shared between the MCR-3.12 variant and

the other MCR-like enzymes is indicated in brackets.

Figure 2. Mass spectrometry analysis of lipid A from strain E. coli J53 (A), its transconjugant
carrying the mcr-1 gene (B) and the clinical isolate 1112 expressing the mcr-3.12 gene (C).

The addition of a PEtN group is indicated by a black arrow.

Figure 3. Proposed model of the chronology of the acquisition of the mcr-3.12 gene into the
IncA/C2 plasmid. The genes eamA and dgkA encode for a metabolite transporter and a
diacylglycerol kinase , respectively. intA and intB represent putative integrases ; a, 3 and y are
the ORF encoding for a reverse transcriptase, a transcriptional regulator and a diguanylate
cyclase, respectively ; & corresponds to the ORF encoding for a DNA methyltransferase

located onto the IncA/C2 plasmid backbone.
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