274 research outputs found

    PANORAMA IMAGE SETS FOR TERRESTRIAL PHOTOGRAMMETRIC SURVEYS

    Get PDF
    High resolution 3D models produced from photographs acquired with consumer-grade cameras are becoming increasingly common in the fields of geosciences. However, the quality of an image-based 3D model depends on the planning of the photogrammetric surveys. This means that the geometric configuration of the multi-view camera network and the control data have to be designed in accordance with the required accuracy, resolution and completeness. From a practical application point of view, a proper planning (of both photos and control data) of the photogrammetric survey especially for terrestrial acquisition, is not always ensured due to limited accessibility of the target object and the presence of occlusions. To solve these problems, we propose a different image acquisition strategy and we test different geo-referencing scenarios to deal with the practical issues of a terrestrial photogrammetric survey. The proposed photogrammetric survey procedure is based on the acquisition of a sequence of images in panorama mode by rotating the camera on a standard tripod. The offset of the pivot point from the projection center prevents the stitching of these images into a panorama. We demonstrate how to still take advantage of this capturing mode. The geo-referencing investigation consists of testing the use of directly observed coordinates of the camera positions, different ground control point (GCP) configurations, and GCPs with different accuracies, i.e. artificial targets vs. natural features. Images of the test field in a low-slope hill were acquired from the ground using an SLR camera. To validate the photogrammetric results a terrestrial laser scanner survey is used as benchmark

    Three different glacier surges at a spot: What satellites observe and what not

    Get PDF
    In the Karakoram, dozens of glacier surges occurred in the past 2 decades, making the region a global hotspot. Detailed analyses of dense time series from optical and radar satellite images revealed a wide range of surge behaviour in this region: from slow advances longer than a decade at low flow velocities to short, pulse-like advances over 1 or 2 years with high velocities. In this study, we present an analysis of three currently surging glaciers in the central Karakoram: North and South Chongtar Glaciers and an unnamed glacier referred to as NN9. All three glaciers flow towards the same small region but differ strongly in surge behaviour. A full suite of satellites (e.g. Landsat, Sentinel-1 and 2, Planet, TerraSAR-X, ICESat-2) and digital elevation models (DEMs) from different sources (e.g. Shuttle Radar Topography Mission, SRTM; Satellite Pour l'Observation de la Terre, SPOT; High Mountain Asia DEM, HMA DEM) are used to (a) obtain comprehensive information about the evolution of the surges from 2000 to 2021 and (b) to compare and evaluate capabilities and limitations of the different satellite sensors for monitoring surges of relatively small glaciers in steep terrain. A strongly contrasting evolution of advance rates and flow velocities is found, though the elevation change pattern is more similar. For example, South Chongtar Glacier had short-lived advance rates above 10 yr-1, velocities up to 30 d-1, and surface elevations increasing by 170 m. In contrast, the neighbouring and 3-times-smaller North Chongtar Glacier had a slow and near-linear increase in advance rates (up to 500 yr-1), flow velocities below 1 d-1 and elevation increases up to 100 m. The even smaller glacier NN9 changed from a slow advance to a full surge within a year, reaching advance rates higher than 1 yr-1. It seems that, despite a similar climatic setting, different surge mechanisms are at play, and a transition from one mechanism to another can occur during a single surge. The sensor inter-comparison revealed a high agreement across sensors for deriving flow velocities, but limitations are found on small and narrow glaciers in steep terrain, in particular for Sentinel-1. All investigated DEMs have the required accuracy to clearly show the volume changes during the surges, and elevations from ICESat-2 ATL03 data fit neatly to the other DEMs. We conclude that the available satellite data allow for a comprehensive observation of glacier surges from space when combining different sensors to determine the temporal evolution of length, elevation and velocity changes

    New cost-effective technologies applied to the study of the glacier melting influence on physical and biological processes in Kongsfjorden area (Svalbard)

    Get PDF
    The Arctic region is greatly affected by climate change, with evident alterations in both physical and biological processes: temperatures are changing at a rate that is twice the global average and phytoplankton productivity is directly affected by ice melting. Continuous monitoring of this ecosystem is fundamental to gain greater understanding of the impact of changes on the natural environment, but the Global Ocean Observing System only provides partial coverage in these extreme areas, which are particularly difficult to reach. Technological progress in oceanographic measurement capabilities is indispensable for the implementation of marine observatories, especially in these remote regions. In recent years, autonomous systems and cost-effective technologies have proved to be valuable for increasing spatial and temporal coverage of data. This is the case with the innovative ArLoC (Arctic Low-Cost) probe, which was designed and developed for easy integration into various types of platforms, enabling continuous measurement of temperature, pressure and fluorescence of chlorophyll a. This work reports on the results of two scientific campaigns carried out in Kongsfjorden (Svalbard Islands) in 2018 in the framework of the UVASS (Unmanned Vehicles for Autonomous Sensing and Sampling) research project. The ArLoC probe was integrated onboard the PROTEUS (Portable RObotic TEchnology for Unmanned Surveys) unmanned semi-submersible vehicle and this allowed us to collect important data in the stretches of sea near tidewater glacier fronts. The acquired data showed several significant effects of glacier melting such as: high temperature and salinity gradients, which cause considerable variations in water mass stratification, and an increase in turbidity and the chlorophyll a concentration, which directly affects primary productivity and the trophic chain. During the surveys, ArLoC proved to be an easy-to-integrate, very reliable instrument, which permitted high spatial resolution investigation of ecological processes during glacier melting as never studied before

    Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data

    Get PDF
    Observations of glacier mass changes are key to understanding the response of glaciers to climate change and related impacts, such as regional runoff, ecosystem changes, and global sea level rise. Spaceborne optical and radar sensors make it possible to quantify glacier elevation changes, and thus multi-annual mass changes, on a regional and global scale. However, estimates from a growing number of studies show a wide range of results with differences often beyond uncertainty bounds. Here, we present the outcome of a community-based inter-comparison experiment using spaceborne optical stereo (ASTER) and synthetic aperture radar interferometry (TanDEM-X) data to estimate elevation changes for defined glaciers and target periods that pose different assessment challenges. Using provided or self-processed digital elevation models (DEMs) for five test sites, 12 research groups provided a total of 97 spaceborne elevation-change datasets using various processing approaches. Validation with airborne data showed that using an ensemble estimate is promising to reduce random errors from different instruments and processing methods but still requires a more comprehensive investigation and correction of systematic errors. We found that scene selection, DEM processing, and co-registration have the biggest impact on the results. Other processing steps, such as treating spatial data voids, differences in survey periods, or radar penetration, can still be important for individual cases. Future research should focus on testing different implementations of individual processing steps (e.g. co-registration) and addressing issues related to temporal corrections, radar penetration, glacier area changes, and density conversion. Finally, there is a clear need for our community to develop best practices, use open, reproducible software, and assess overall uncertainty to enhance inter-comparison and empower physical process insights across glacier elevation-change studies

    Omentalisation as adjunctive treatment of an infected femoral nonunion fracture: a case report

    Get PDF
    A three-year-old male working border collie with an infected femoral nonunion fracture was managed in a two-stage procedure involving debridement and omentalisation, followed by stabilisation with a bone plate and an autogenous cancellous bone graft. Osseous union was documented radiographically 16 weeks after surgery. Telephone follow-up one year later revealed the dog had returned to full working function without evidence of lameness. To the authors' knowledge, this is the first clinical case described in the veterinary literature using omentalisation as an adjunct to the management of an infected, biologically inactive nonunion fracture

    Primary succession and its driving variables – a sphere-spanning approach applied in proglacial areas in the upper Martell Valley (Eastern Italian Alps)

    Get PDF
    Climate change and the associated glacier retreat lead to considerable enlargement and alterations of the proglacial systems. The colonisation of plants in this ecosystem was found to be highly dependent on terrain age, initial site conditions and geomorphic disturbances. Although the explanatory variables are generally well understood, there is little knowledge on their collinearities and resulting influence on proglacial primary succession. To develop a sphere-spanning understanding of vegetation development, a more interdisciplinary approach was adopted. In the proglacial areas of FĂŒrkeleferner, Zufallferner and Langenferner (Martell Valley, Eastern Italian Alps), in total 65 plots of 5×2 m were installed to perform the vegetation analysis on vegetation cover, species number and species composition. For each of those, 39 potential explanatory variables were collected, selected through an extensive literature review. To analyse and further avoid multicollinearities, 33 of the explanatory variables were clustered via principal component analysis (PCA) to five components. Subsequently, generalised additive models (GAMs) were used to analyse the potential explanatory factors of primary succession. The results showed that primary succession patterns were highly related to the first component (elevation and time), the second component (solar radiation), the third component (soil chemistry), the fifth component (soil physics) and landforms. In summary, the analysis of all explanatory variables together provides an overview of the most important influencing variables and their interactions; thus it provides a basis for the debate on future vegetation development in a changing climate.</p
    • 

    corecore