7,933 research outputs found

    Closed form expressions for crack mouth displacements and stress intensity factors for chevron notched short bar and short rod specimens based on experimental compliance measurements

    Get PDF
    A set of equations are presented describing certain fracture mechanics parameters for chevron notch bar and rod specimens. They are developed by fitting compliance calibration data reported earlier. The equations present the various parameters in their most useful forms. The data encompass the entire range of the specimen geometries most commonly used. Their use will facilitate the testing and analysis of brittle metals, ceramics, and glasses

    The importance of clean dwellings

    Get PDF
    n/

    Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions.

    Get PDF
    In most Mediterranean climate (MedClim) regions around the world, global climate models (GCMs) consistently project drier futures. In California, however, projections of changes in annual precipitation are inconsistent. Analysis of daily precipitation in 30 GCMs reveals patterns in projected hydrometeorology over each of the five MedClm regions globally and helps disentangle their causes. MedClim regions, except California, are expected to dry via decreased frequency of winter precipitation. Frequencies of extreme precipitation, however, are projected to increase over the two MedClim regions of the Northern Hemisphere where projected warming is strongest. The increase in heavy and extreme precipitation is particularly robust over California, where it is only partially offset by projected decreases in low-medium intensity precipitation. Over the Mediterranean Basin, however, losses from decreasing frequency of low-medium-intensity precipitation are projected to dominate gains from intensifying projected extreme precipitation. MedClim regions are projected to become more sub-tropical, i.e. made dryer via pole-ward expanding subtropical subsidence. California's more nuanced hydrological future reflects a precarious balance between the expanding subtropical high from the south and the south-eastward extending Aleutian low from the north-west. These dynamical mechanisms and thermodynamic moistening of the warming atmosphere result in increased horizontal water vapor transport, bolstering extreme precipitation events

    The influence of composition, annealing treatment, and texture on the fracture toughness of Ti-5Al-2.5Sn plate at cryogenic temperatures

    Get PDF
    The plane strain fracture toughness K sub Ic and conventional tensile properties of two commercially produced one-inch thick Ti-5Al-2.5Sn plates were determined at cryogenic temperatures. One plate was extra-low interstitial (ELI) grade, the other normal interstitial. Portions of each plate were mill annealed at 1088 K (1500 F) followed by either air cooling or furnace cooling. The tensile properties, flow curves, and K sub Ic of these plates were determined at 295 K (room temperature), 77 K (liquid nitrogen temperature), and 20 K (liquid hydrogen temperature)

    Fracture toughness of brittle materials determined with chevron notch specimens

    Get PDF
    The use of chevron-notch specimens for determining the plane strain fracture toughness (K sub Ic) of brittle materials is discussed. Three chevron-notch specimens were investigated: short bar, short rod, and four-point-bend. The dimensionless stress intensity coefficient used in computing K sub Ic is derived for the short bar specimen from the superposition of ligament-dependent and ligament-independent solutions for the straight through crack, and also from experimental compliance calibrations. Coefficients for the four-point-bend specimen were developed by the same superposition procedure, and with additional refinement using the slice model of Bluhm. Short rod specimen stress intensity coefficients were determined only by experimental compliance calibration. Performance of the three chevron-notch specimens and their stress intensity factor relations were evaluated by tests on hot-pressed silicon nitride and sintered aluminum oxide. Results obtained with the short bar and the four-point-bend specimens on silicon nitride are in good agreement and relatively free of specimen geometry and size effects within the range investigated. Results on aluminum oxide were affected by specimen size and chevron-notch geometry, believed due to a rising crack growth resistance curve for the material. Only the results for the short bar specimen are presented in detail

    Factors Affecting Regeneration of Western Montana Clearcuts

    Get PDF
    Paper published as Bulletin 33 in the UM Bulletin Forestry Series.https://scholarworks.umt.edu/umforestrybulletin/1017/thumbnail.jp

    Impact of multiscale dynamical processes and mixing on the chemical composition of the upper troposphere and lower stratosphere during the Intercontinental Chemical Transport Experiment–North America

    Get PDF
    We use high-frequency in situ observations made from the DC8 to examine fine-scale tracer structure and correlations observed in the upper troposphere and lower stratosphere during INTEX-NA. Two flights of the NASA DC-8 are compared and contrasted. Chemical data from the DC-8 flight on 18 July show evidence for interleaving and mixing of polluted and stratospheric air masses in the vicinity of the subtropical jet in the upper troposphere, while on 2 August the DC-8 flew through a polluted upper troposphere and a lowermost stratosphere that showed evidence of an intrusion of polluted air. We compare data from both flights with RAQMS 3-D global meteorological and chemical model fields to establish dynamical context and to diagnose processes regulating the degree of mixing on each day. We also use trajectory mapping of the model fields to show that filamentary structure due to upstream strain deformation contributes to tracer variability observed in the upper troposphere. An Eulerian measure of strain versus rotation in the large-scale flow is found useful in predicting filamentary structure in the vicinity of the jet. Higher-frequency (6–24 km) tracer variability is attributed to buoyancy wave oscillations in the vicinity of the jet, whose turbulent dissipation leads to efficient mixing across tracer gradients

    Implications of Constraints on Mass Parameters in the Higgs Sector of the Nonlinear Supersymmetric SU(5) Model

    Full text link
    The Higgs sector of the minimal nonlinear supersymmetric SU(5) model contains three mass parameters. Although these mass parameters are essentially free at the electroweak scale, they might have particular values if they evolve from a particular constraints at the GUT scale through the RG equations. By assuming a number of simple constraints on these mass parameters at the GUT scale, we obtain their values at the electroweak scale through the RG equations in order to investigate the phenomenological implications. Some of them are found to be consistent with the present experimental data.Comment: 23 pages, 10 figure

    Origins of the midlatitude Pacific decadal variability

    Get PDF
    Analysis of multiple climate simulations shows much of the midlatitude Pacific decadal variability to be composed of two simultaneously occurring elements: One is a stochastically driven, passive ocean response to the atmosphere while the other is oscillatory and represents a coupled mode of the ocean‐atmosphere system. ENSO processes are not required to explain the origins of the decadal variability. The stochastic variability is driven by random variations in wind stress and heat flux associated with internal atmospheric variability but amplified by a factor of 2 by interactions with the ocean. We also found a coupled mode of the ocean‐atmosphere system, characterized by a significant power spectral peak near 1 cycle/20 years in the region of the midlatitude North Pacific and Kuroshio Extension. Ocean dynamics appear to play a critical role in this coupled air/sea mode
    corecore