87 research outputs found

    Chronology of Dune Development in the White River Badlands, Northern Great Plains, USA

    Get PDF
    Aeolian dune field chronologies provide important information on drought history on the Great Plains. The White River Badlands (WRB) dunes are located approximately 60 km north of the Nebraska Sand Hills (NSH), in the western section of the northern Great Plains. Clifftop dunes, sand sheets, and stabilized northwest-southeast trending parabolic dunes are found on upland mesas and buttes, locally called tables. The result of this study is a dune stabilization history determined from samples collected from stratigraphic exposures and dune crests. Thirty-seven OSL ages, from this and previous investigations, show three periods of dune activity: 1) ∌21,000 years ago to 12,000 years ago (a), 2) ∌9 to 6 ka, and 3) post-700 a. Stratigraphic exposures and low-relief dune forms preserve evidence of late Pleistocene and middle Holocene dune development, while high-relief dune crests preserve evidence of late Holocene dune development. Results of 12 OSL ages from the most recent dune activation event indicate that Medieval Climate Anomaly (MCA) droughts and Little Ice Age (LIA) droughts caused dune reactivation on the tables. Dune reactivation was accompanied by other drought-driven geomorphological responses in the WRB, including fluvial incision of the prairie and formation of sod tables. Regional significance of the MCA and LIA droughts is supported by similarities in the aeolian chronologies of the NSH at 700–600 a and some western Great Plains dune fields at 420–210 a. Aerial photographs of the WRB show little activity during the Dust Bowl droughts of the 1930s

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Paratuberculose em ruminantes no Brasil

    Full text link

    Scattering by a Single Particle

    No full text

    The impact of regional reconfiguration on the management of appendicitis.

    No full text
    Reconfiguration of surgical services in the Mid-West in 2009 resulted in a large increase in numbers of patients undergoing emergency surgery for appendicitis in University Hospital Limerick (UHL)
    • 

    corecore