1,191 research outputs found

    Compressed Speech as an Aid in Improving the Reading Skills of Junior High School Students

    Get PDF
    Purpose. The purpose of this study was to determine the extent to which compressed speech recordings and regular rate speech recordings could be used to improve the reading speed, accuracy, and comprehension of junior high school students. (Abstract shortened.

    Collaborative Professional Partnership: A Dean and Department Head\u27s Story

    Get PDF
    Administration has its share of problem-solving. In this presentation, a dean and department head join together to tell the story of the start of their professional relationship, role play their problem-solving process, and identify what they believe are key aspects that make their professional relationship effective

    National Review of Interscholastic Competitive Balance Solutions Related to the Public-Private Debate

    Get PDF
    The public-private debate in interscholastic athletics has vexed athletic administrators and policy-makers for more than a century. The ability of private schools to secure athletic talent beyond the defined geographic borders that restrain public schools has led to competitive imbalance in many states. Competitive imbalance is evidenced by a disproportionate amount of athletic success demonstrated by private schools, often in the form of state championships. To determine the current landscape of interscholastic competitive balance, commissioners and high-ranking officials at each state association listed within the directory of the National Federation of State High Schools (NFHS) were contacted to identify their policies. Current competitive balance solutions include enrollment classifications, separate playoffs, enrollment multipliers and subtractors, tournament success factors, and consideration of socioeconomic factors. The results of this analysis provide an overview of competitive balance solutions being implemented in the United States

    A rising tide lifts all MBOATs: recent progress in structural and functional understanding of membrane bound O-acyltransferases

    Get PDF
    Acylation modifications play a central role in biological and physiological processes. Across a range of biomolecules from phospholipids to triglycerides to proteins, introduction of a hydrophobic acyl chain can dramatically alter the biological function and cellular localization of these substrates. Amongst the enzymes catalyzing these modifications, the membrane bound O-acyltransferase (MBOAT) family occupies an intriguing position as the combined substrate selectivities of the various family members span all three classes of these biomolecules. MBOAT-dependent substrates are linked to a wide range of health conditions including metabolic disease, cancer, and neurodegenerative disease. Like many integral membrane proteins, these enzymes have presented challenges to investigation due to their intractability to solubilization and purification. However, over the last several years new solubilization approaches coupled with computational modeling, crystallography, and cryoelectron microscopy have brought an explosion of structural information for multiple MBOAT family members. These studies enable comparison of MBOAT structure and function across members catalyzing modifications of all three substrate classes, revealing both conserved features amongst all MBOATs and distinct architectural features that correlate with different acylation substrates ranging from lipids to proteins. We discuss the methods that led to this renaissance of MBOAT structural investigations, our new understanding of MBOAT structure and implications for catalytic function, and the potential impact of these studies for development of new therapeutics targeting MBOAT-dependent physiological processes

    Comparison of Satellite Observations of Nitrogen Dioxide to Surface Monitor Nitrogen Dioxide Concentration

    Get PDF
    Nitrogen dioxide is one of the U. S. EPA s criteria pollutants, and one of the main ingredients needed for the production of ground-level ozone. Both ozone and nitrogen dioxide cause severe public health problems. Existing satellites have begun to produce observational data sets for nitrogen dioxide. Under NASAs Earth Science Applications Program, we examined the relationship between satellite observations and surface monitor observations of this air pollutant to examine if the satellite data can be used to facilitate a more capable and integrated observing network. This report provides a comparison of satellite tropospheric column nitrogen dioxide to surface monitor nitrogen dioxide concentration for the period from September 1996 through August 1997 at more than 300 individual locations in the continental US. We found that the spatial resolution and observation time of the satellite did not capture the variability of this pollutant as measured at ground level. The tools and processes developed to conduct this study will be applied to the analysis of advanced satellite observations. One advanced instrument has significantly better spatial resolution than the measurements studied here and operates with an afternoon overpass time, providing a more representative distribution for once-per-day sampling of this photochemically active atmospheric constituent

    A Theoretical Investigation of the One– and Two–photon Properties of Porphyrins

    Get PDF
    The one‐ and two‐photon properties of free base porphin, free base porphin dianion, and the 2,4‐substituted diformyl and divinyl analogs of these molecules are studied using a semiempirical SCF‐MO formalism (CNDO‐π‐SCF‐MO‐PSDCI) including extensive single and double configuration interaction. Strongly two‐photon allowed states are predicted to lie in the Soret region as well as in the region between the Soret and visible bands. A number of the two‐photon allowed states in the Soret region are predicted to have two‐photon absorptivities exceeding 100×10−50 cm4 s molecule−1 photon−1. The calculations indicate that the visible (Q) states are well characterized by the four orbital model, whereas the Soret (B) states contain significant contributions from configurations comprised of other orbitals. The inclusion of extensive double configuration interaction significantly reduces the Soret‐visible (B–Q) splitting, increases the Qx–Qy splitting, and yields calculated oscillator strengths for the Qbands in better agreement with experiment than values calculated using single CI alone. The effects of conjugation into the porphyrin macrocycle are predicted to be more significant than inductive effects on macrocycle π orbitals due to substituent polarity. The 〈Qx‖r‖S0〉 and 〈Qy‖r‖S0〉 transition moment vectors are predicted to lie approximately through adjacent pyrrole rings in 2‐ and 4‐monoformyl free base porphin dianions and approximately through adjacent methine bridges in 2,4‐diformyl free base porphin dianion

    Dispersion in the open ocean seasonal pycnocline at scales of 1-10 km and 1-6 days

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(2), (2020): 415-437, doi:10.1175/JPO-D-19-0019.1.Results are presented from two dye release experiments conducted in the seasonal thermocline of the Sargasso Sea, one in a region of low horizontal strain rate (~10−6 s−1), the second in a region of intermediate horizontal strain rate (~10−5 s−1). Both experiments lasted ~6 days, covering spatial scales of 1–10 and 1–50 km for the low and intermediate strain rate regimes, respectively. Diapycnal diffusivities estimated from the two experiments were Îșz = (2–5) × 10−6 m2 s−1, while isopycnal diffusivities were ÎșH = (0.2–3) m2 s−1, with the range in ÎșH being less a reflection of site-to-site variability, and more due to uncertainties in the background strain rate acting on the patch combined with uncertain time dependence. The Site I (low strain) experiment exhibited minimal stretching, elongating to approximately 10 km over 6 days while maintaining a width of ~5 km, and with a notable vertical tilt in the meridional direction. By contrast, the Site II (intermediate strain) experiment exhibited significant stretching, elongating to more than 50 km in length and advecting more than 150 km while still maintaining a width of order 3–5 km. Early surveys from both experiments showed patchy distributions indicative of small-scale stirring at scales of order a few hundred meters. Later surveys show relatively smooth, coherent distributions with only occasional patchiness, suggestive of a diffusive rather than stirring process at the scales of the now larger patches. Together the two experiments provide important clues as to the rates and underlying processes driving diapycnal and isopycnal mixing at these scales.Results are presented from two dye release experiments conducted in the seasonal thermocline of the Sargasso Sea, one in a region of low horizontal strain rate (~10−6 s−1), the second in a region of intermediate horizontal strain rate (~10−5 s−1). Both experiments lasted ~6 days, covering spatial scales of 1–10 and 1–50 km for the low and intermediate strain rate regimes, respectively. Diapycnal diffusivities estimated from the two experiments were Îșz = (2–5) × 10−6 m2 s−1, while isopycnal diffusivities were ÎșH = (0.2–3) m2 s−1, with the range in ÎșH being less a reflection of site-to-site variability, and more due to uncertainties in the background strain rate acting on the patch combined with uncertain time dependence. The Site I (low strain) experiment exhibited minimal stretching, elongating to approximately 10 km over 6 days while maintaining a width of ~5 km, and with a notable vertical tilt in the meridional direction. By contrast, the Site II (intermediate strain) experiment exhibited significant stretching, elongating to more than 50 km in length and advecting more than 150 km while still maintaining a width of order 3–5 km. Early surveys from both experiments showed patchy distributions indicative of small-scale stirring at scales of order a few hundred meters. Later surveys show relatively smooth, coherent distributions with only occasional patchiness, suggestive of a diffusive rather than stirring process at the scales of the now larger patches. Together the two experiments provide important clues as to the rates and underlying processes driving diapycnal and isopycnal mixing at these scales.2020-08-0
    • 

    corecore