19 research outputs found

    Hybrid Global Optimization Algorithms for Protein Structure Prediction: Alternating Hybrids

    Get PDF
    Hybrid global optimization methods attempt to combine the beneficial features of two or more algorithms, and can be powerful methods for solving challenging nonconvex optimization problems. In this paper, novel classes of hybrid global optimization methods, termed alternating hybrids, are introduced for application as a tool in treating the peptide and protein structure prediction problems. In particular, these new optimization methods take the form of hybrids between a deterministic global optimization algorithm, the αBB, and a stochastically based method, conformational space annealing (CSA). The αBB method, as a theoretically proven global optimization approach, exhibits consistency, as it guarantees convergence to the global minimum for twice-continuously differentiable constrained nonlinear programming problems, but can benefit from computationally related enhancements. On the other hand, the independent CSA algorithm is highly efficient, though the method lacks theoretical guarantees of convergence. Furthermore, both the αBB method and the CSA method are found to identify ensembles of low-energy conformers, an important feature for determining the true free energy minimum of the system. The proposed hybrid methods combine the desirable features of efficiency and consistency, thus enabling the accurate prediction of the structures of larger peptides. Computational studies for met-enkephalin and melittin, employing sequential and parallel computing frameworks, demonstrate the promise for these proposed hybrid methods

    Methane as a resource: can the methanotrophs add value?

    No full text
    Methane is an abundant gas used in energy recovery systems, heating, and transport. Methanotrophs are bacteria capable of using methane as their sole carbon source. Although intensively researched, the myriad of potential biotechnological applications of methanotrophic bacteria has not been comprehensively discussed in a single review. Methanotrophs can generate single-cell protein, biopolymers, components for nanotechnology applications (surface layers), soluble metabolites (methanol, formaldehyde, organic acids, and ectoine), lipids (biodiesel and health supplements), growth media, and vitamin B12 using methane as their carbon source. They may be genetically engineered to produce new compounds such as carotenoids or farnesene. Some enzymes (dehydrogenases, oxidase, and catalase) are valuable products with high conversion efficiencies and can generate methanol or sequester CO2 as formic acid ex vivo. Live cultures can be used for bioremediation, chemical transformation (propene to propylene oxide), wastewater denitrification, as components of biosensors, or possibly for directly generating electricity. This review demonstrates the potential for methanotrophs and their consortia to generate value while using methane as a carbon source. While there are notable challenges using a low solubility gas as a carbon source, the massive methane resource, and the potential cost savings while sequestering a greenhouse gas, keeps interest piqued in these unique bacteria

    Genome Analysis Coupled with Physiological Studies Reveals a Diverse Nitrogen Metabolism in Methylocystis sp Strain SC2

    Get PDF
    Dam B, Dam S, Blom J, Liesack W. Genome Analysis Coupled with Physiological Studies Reveals a Diverse Nitrogen Metabolism in Methylocystis sp Strain SC2. Plos One. 2013;8(10): e74767.Background: Methylocystis sp. strain SC2 can adapt to a wide range of methane concentrations. This is due to the presence of two isozymes of particulate methane monooxygenase exhibiting different methane oxidation kinetics. To gain insight into the underlying genetic information, its genome was sequenced and found to comprise a 3.77 Mb chromosome and two large plasmids. Principal Findings: We report important features of the strain SC2 genome. Its sequence is compared with those of seven other methanotroph genomes, comprising members of the Alphaproteobacteria, Gammaproteobacteria, and Verrucomicrobia. While the pan-genome of all eight methanotroph genomes totals 19,358 CDS, only 154 CDS are shared. The number of core genes increased with phylogenetic relatedness: 328 CDS for proteobacterial methanotrophs and 1,853 CDS for the three alphaproteobacterial Methylocystaceae members, Methylocystis sp. strain SC2 and strain Rockwell, and Methylosinus trichosporium OB3b. The comparative study was coupled with physiological experiments to verify that strain SC2 has diverse nitrogen metabolism capabilities. In correspondence to a full complement of 34 genes involved in N-2 fixation, strain SC2 was found to grow with atmospheric N-2 as the sole nitrogen source, preferably at low oxygen concentrations. Denitrification-mediated accumulation of 0.7 nmol N-30(2)/hr/mg dry weight of cells under anoxic conditions was detected by tracer analysis. N-2 production is related to the activities of plasmid-borne nitric oxide and nitrous oxide reductases. Conclusions/Perspectives: Presence of a complete denitrification pathway in strain SC2, including the plasmid-encoded nosRZDFYX operon, is unique among known methanotrophs. However, the exact ecophysiological role of this pathway still needs to be elucidated. Detoxification of toxic nitrogen compounds and energy conservation under oxygen-limiting conditions are among the possible roles. Relevant features that may stimulate further research are, for example, absence of CRISPR/Cas systems in strain SC2, high number of iron acquisition systems in strain OB3b, and large number of transposases in strain Rockwell
    corecore