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Hybrid Global Optimization Algorithms for Protein
Structure Prediction: Alternating Hybrids

J. L. Klepeis, M. J. Pieja, and C. A. Floudas
Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544-5263

ABSTRACT Hybrid global optimization methods attempt to combine the beneficial features of two or more algorithms, and can
be powerful methods for solving challenging nonconvex optimization problems. In this paper, novel classes of hybrid global
optimization methods, termed alternating hybrids, are introduced for application as a tool in treating the peptide and protein
structure prediction problems. In particular, these new optimization methods take the form of hybrids between a deterministic
global optimization algorithm, the aBB, and a stochastically based method, conformational space annealing (CSA). The aBB
method, as a theoretically proven global optimization approach, exhibits consistency, as it guarantees convergence to the
global minimum for twice-continuously differentiable constrained nonlinear programming problems, but can benefit from
computationally related enhancements. On the other hand, the independent CSA algorithm is highly efficient, though the
method lacks theoretical guarantees of convergence. Furthermore, both the aBB method and the CSA method are found to
identify ensembles of low-energy conformers, an important feature for determining the true free energy minimum of the system.
The proposed hybrid methods combine the desirable features of efficiency and consistency, thus enabling the accurate
prediction of the structures of larger peptides. Computational studies for met-enkephalin and melittin, employing sequential and
parallel computing frameworks, demonstrate the promise for these proposed hybrid methods.

INTRODUCTION

Proteins are among the most complex molecules found in
nature, and among those most vital for cellular processes
as they may serve as structural elements, signal receptors,
transport channels, and reaction catalysts, among a myriad of
other possible functions. Because the function of a particular
protein is directly related to the three-dimensional confor-
mation assumed by that protein, the determination of protein
structures is an extremely active area of research. The most
basic means of resolving a protein structure are through ex-
perimental observations, such as x-ray crystallography and
certain forms of NMR spectroscopy. However, such methods
generally require a great expense of both time and cost,
and, moreover, their applicability is limited to a subset of all
proteins.

Another way to determine a protein structure is to predict
these data through computational means. Such methods rely
on the fact that the linear protein information, that is, the
amino acid sequence, is readily available, and that there
exists a link between the linear sequence information for
a given protein and its native three dimensional. This was
established experimentally by first isolating and denaturing
proteins to produce random, disordered structures, and then
restoring physiological conditions thereby prompting the
proteins to immediately return to their native conformations
(Anfinsen et al., 1961). Such behavior established the
thermodynamic hypothesis (Anfinsen, 1973), which holds
that the tertiary structure of a protein is uniquely determined
by the primary structure.

The task of predicting the three-dimensional structure of
a protein given only its primary sequence of amino acids
defines the structure prediction in protein-folding problem. A
fundamental principle for understanding protein folding
relies upon Anfinsen’s observation that the native tertiary
structure of a protein corresponds to the conformation that
minimizes the free energy of the system (Anfinsen et al.,
1961). Mathematically, the free energy of a protein can be
modeled as functions that mimic the different interaction
within the protein system, including nonbonded interactions,
hydrogen bonding interactions, hydrophobic interactions,
solvent interactions, and entropic effects. These functions de-
pend on the positions of the atoms of that protein, and the
native conformation of the protein corresponds to the set of
atomic locations providing the minimum possible value of
the free energy function.

Because the energy functions are highly nonconvex, the
structure prediction in protein folding problem must be treated
as a global optimization problem. This is particularly
significant for ab initio structure prediction inasmuch as the
aid of statistical and database information is not desired.
Although it is not yet practical to directly apply global
optimization and hope to solve the ab initio structure
prediction of medium or large sized proteins using atomistic
level models, the development of global optimization
techniques remains a key element in the hierarchical and
decomposition based approaches used in ab initio structure
prediction. Many techniques have been developed and
applied to ab initio protein the structure prediction problem
with varying degrees of success, and recent reviews can be
found elsewhere (Orengo et al., 1999; Lesk et al., 2001). Our
recent contributions to ab initio structure prediction (Klepeis
et al., 2002b) include an overall multistage approach based on
1), identification of helical segments through partitioning of
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the protein sequence into overlapping subsequences and
performing deterministic global optimization with free energy
analysis to determine helical propensities (Klepeis and
Floudas, 2002); 2), prediction of b-sheet topology and
disulfide bridge networks through the postulation of a
b-strand superstructure and using integer linear optimization
to maximize the hydrophobic contact energy (Klepeis and
Floudas, 2003b); and 3), prediction of the final three-
dimensional structure of a protein using a nonconvex con-
strained formulation and deterministic global optimization
techniques (Klepeis and Floudas, 2003a). In all cases, the
desired properties of a global optimization approach include
consistency and efficiency, such that the location of the
minimum energy conformations is guaranteed and is ac-
complished in a reasonable period of time. Many global op-
timization algorithms have been developed in an effort to
realize these goals. One class of methods relies on probability
to perform the optimization, and is termed stochastic global
optimization approaches. For example, the conformational
space annealing (CSA) algorithm (Lee et al., 1998, 1997,
2000; Lee and Scheraga, 1999; Ripoll et al., 1998;), in-
troduced by Scheraga and co-workers, uses principles taken
from genetic algorithms to pass over high-energy conforma-
tional states and develop low-energy ones. Other methods can
be classified as deterministic because they employ theoreti-
cally rigorous procedures to guarantee the location of the
global minimum. The aBB algorithm (Adjiman et al.,
1998a,b, 2000; Klepeis et al., 1998, 1999, 2002b; Klepeis
and Floudas, 1999; Floudas, 2000) is such a method that
brackets the global optimum between a nondecreasing series
of lower bounds and a nonincreasing series of upper bounds.

The individual strengths and weaknesses of the aBB and
CSA algorithms point toward the potential benefits to be
gained from a combination of the two algorithms into a single
hybrid global optimization approach. As one example, the
local minimum conformations obtained during the course of
an aBB global optimization run can be used to guide the
CSA algorithm by using these minima to generate trial
conformations in the CSA. This combination helps to push
the selection process toward low energy regions during the
course of the branch and bound optimization. It is also
possible to use the aBB position of the hybrid to generate
seed conformations for the CSA portion so that, in addition
to the benefits described above, bank diversity is promoted.
Bank diversity increases the chances that structural compo-
nents necessary for constructing offspring that will represent
the global optimum are contained within the bank.

Previous results have verified that the integration of the
aBB and CSA algorithms into a single hybrid global
optimization approach can be used to enhance performance
when compared to the performance of the individual
approaches (Klepeis et al., 2002a). In this paper, new classes
of hybrid global optimization methods, termed alternating
hybrids, are introduced. In this new class of methods, the
algorithm alternates between large blocks of aBB iterations

and large blocks of CSA iterations. The first test peptide is
the five-residue met-enkephalin system, a pentapeptide that
has become a frequently used system to benchmark
optimization algorithms (Hansmann and Wille, 2002; Lee
et al., 1997; Klepeis et al., 1998, 2002b). A more complex
system is the membrane bound portion of the protein
melittin, a 20-residue polypeptide. A number of alternating
hybrids are described and shown to perform better than each
independent approach for the met-enkephalin system. Be-
cause the alternating hybrids are amenable to parallelization,
a parallelized version of the approach is also implemented
and shown to locate the potential energy global optimum
of melittin in each independent run.

In the sequel, the mathematical formulations needed to
represent a protein and to model its free energy, as well the
fundamentals of the aBB and CSA global optimization
algorithms, are described. Next, the principles behind the
hybrid algorithms are presented, and computational results
regarding the application of these methods to the met-
enkephalin test system are considered. The adaptation of the
hybrid algorithms to a parallel computing environment and
the application of this parallelized hybrid to a 20-residue
system melittin are also discussed.

MATERIALS AND METHODS

Energy modeling

The free energy of a protein depends upon all of the different interactions
between the atoms and groups within the protein, and these energies can be
expressed as mathematical functions depending on the positions of the atoms
in a protein (Floudas et al., 1999). Rigorous application of Anfinsen’s
hypothesis requires the evaluation of several energetic components,
including vacuum potential energy, solvation energy, and entropic
contributions (Anfinsen, 1973; Floudas et al., 1999), and although the focus
of this work is on the analysis of vacuum potential energy and entropic
contributions, the algorithm can be easily extended to include solvation
contributions (Klepeis et al., 2002b).

A number of energy formulations has been developed using classical
descriptions of molecules, employing basic electrostatics and empirically
derived interaction parameters to model interatomic forces. Methods using
this general formulation include AMBER (Weiner et al., 1984, 1986),
CHARMM (Brooks et al., 1983), ECEPP/3 (Nemethy et al., 1992), ENCAD
(Levitt, 1983), GROMOS (van Gunsteren and Berendsen, 1987), and MM3
(Lii and Allinger, 1989a,b). This work employs the ECEPP/3 (Empirical
Conformation Energy Program for Peptides) model. Under this model, the
lengths of covalent bonds, along with the bond angles, are taken to be
constant at their equilibrium value, and the independent degrees of freedom
become the torsional angles of the system. The energy formulation used by
ECEPP/3 is given by:
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Here, rij gives the distance between atoms i and j. qi gives the effective charge
on atom i.Fij is a distance parameter set equal to 0.5 for 1–4 interactions and to
1.0 for 1–5 and higher interactions. Aij;A9ij;Bij; and Cij are empirical
parameters giving the strength of nonbonded or hydrogen-bonded inter-
actions for the atom pair ij. Eo,l and Eo,k correspond to rotational barriers for
a given dihedral angle. uk represents any dihedral angle, and xl represents
a dihedral angle specifically associated with ring closing in cysteine residues.
cl and ck take the values 61, and nl and nk give the symmetry class for
a particular dihedral angle. A cysteine loop closing energy term and a internal
energy for each proline residue are also added (Nemethy et al., 1992).

Accurate calculation of entropic considerations requires the identification
of a large collection of low-energy potential energy minima. For proteins,
the entropic contribution arises from the ability of the protein to fluctuate
among a number of conformationally similar low-energy states (Klepeis and
Floudas, 1999). Systems having larger ensembles of low-energy minima that
differ only slightly in conformation will therefore have more favorable
entropic considerations than systems where a single low-energy conforma-
tion is surrounded in the conformational space by unfavorable, high-energy
conformations. Methods of determining entropic contributions, and hence
conformational free energies, generally involve the development of
statistical distribution functions giving the probabilities of the protein
occupying each of the available low-energy conformations (Klepeis and
Floudas, 1999; Go and Scheraga, 1976; Flory, 1974). The hybrid methods
developed in this work will provide an ideal mechanism for generating
ensembles of low-energy conformers for free-energy calculations.

Global optimization

The energy functions outlined above are nonconvex functions that generate
rugged energy hypersurfaces exhibiting many local minima. To overcome
the inherent difficulty of locating the global minimum energy among many
local minima, algorithms have been developed for searching the variable
space and locating the global optimum without exhaustive enumeration of
all local minima. These global optimization algorithms fall into two broad
categories—stochastic methods and deterministic methods (Floudas et al.,
1999). Stochastic methods are those that involve some element of chance,
and thus these methods can not provide theoretical guarantees for finding the
global minimum energy solution. On the other hand, deterministic methods
are those grounded on mathematical guarantees for consistently finding the
global optimum.

The present work introduces new classes of hybrid global optimization
methods in an attempt to combine the beneficial features of both the aBB
approach, a deterministic branch and bound approach (Adjiman et al.,
1998a,b, 2000; Klepeis et al., 1998, 1999, 2002b; Klepeis and Floudas, 1999;
Floudas, 2000), and the CSA method, a stochastic method that employs
elements of both simulated annealing and genetic algorithms (Lee et al., 1997,
1998, 2000; Lee and Scheraga, 1999; Ripoll et al.). Before describing the
algorithmic implementation for the alternating hybrid approaches, the
fundamentals of the CSA and aBB algorithms are introduced.

Conformational space annealing

The CSA algorithm, as developed and refined by Scheraga and co-workers
(Lee et al., 1997, 1998, 2000; Lee and Scheraga, 1999; Ripoll et al., 1998),
belongs to a class of optimization procedures known as simulated annealing
algorithms (Kirkpatrick et al., 1983). A simulated annealing algorithm be-
gins with the entire conformation, but as the search progresses, the regions
under investigation are gradually narrowed down, with only the most
promising (lowest-energy) regions remaining in the active domain.
Eventually, the search space is reduced to a small region surrounding the
putative global optimum, at which point the algorithm is terminated.

The CSA (Lee et al., 1997) itself represents a hybrid stochastic global
optimization approach in that it accomplishes the probing of the search space
by combining the elements of a genetic algorithm with the concept of

simulated annealing. Genetic algorithms attempt to mimic the biological
process of natural selection by introducing variation, involving both
individual and sets of variables, into the current population of conformers
to produce a new, more fit (lower energy) generation of conformations.
Genetic algorithms have had some success in locating the minimum energy
conformers for certain protein test problems. A genetic algorithm (LeGrand
and Merz, 1993) successfully located the potential energy global minimum
(PEGM) for the five-residue oligopeptide, met-enkephalin. However, for
larger test problems, such as the 20-residue melittin and 18-residue apamin
proteins, the algorithm has had considerably less success (Sun, 1993).

The CSA approach begins with a bank of conformations scattered
randomly through dihedral angle space. After generating a set of Nbank
random conformations, each conformation is subjected to a local energy
minimization using the ECEPP/3 energy force field (Nemethy et al., 1992).
This set of conformations is labeled as the first bank, and serves as
a repository from which to extract random point mutations for dihedral angle
variables. The first bank is also used to define the annealing schedule by first
calculating the average distance between the first bank elements in dihedral
angle space:

Dave ¼ 1
Nbank � ðNbank � 1Þ +

Nbank

i¼1
+

Nbank

j¼1
+

Ndihed

k¼1
jui

k � uj
kj 8i 6¼ j; (2)

where Ndihed is the number of dihedral angles in the protein to be considered,
and ui

k is the value of the kth dihedral angle of the ith member of the first
bank. The initial cutoff radius for the area in dihedral angle space is then
defined in terms of this average bank separation:

Dcut;i ¼ Dave

2
(3)

and a schedule is set up to reduce Dcut exponentially so that Dcut is reduced
to a value of ;908 after 5000 minimizations (Lee and Scheraga, 1999).

After establishing this first bank and annealing schedule, the first bank is
copied, and the copy is set as the current bank. A seed conformation—that is,
an element withdrawn from this bank—takes part in the genetic algorithm
portion of the method. Random point mutations are generated by making
a copy of the seed conformation and replacing one of its dihedral angle
values with the value of the corresponding dihedral angle of a randomly
selected first bank element. Such modifications are repeated for any random
dihedral angle and for a restricted set composed of the f, c, or x1 variables
(Lee and Scheraga, 1999). Additional offspring are generated by choosing
a contiguous group of dihedral angle variables consisting of ; 1⁄8 of the total
angles in the peptide (Lee et al., 1997), and replacing that group of variables
in the seed conformation with those from another, randomly selected
conformation in the bank. Note that this procedure uses the bank, not the first
bank, because its intent is to simulate crossover between population
members, and not random mutation. This procedure is then repeated with
even larger sets of dihedral angles called connected groups, each comprising
;1⁄4 of the total angles in the protein (Lee et al., 1997).

Each trial conformation is subjected to local energy minimization, and the
energy of each offspring is then compared with the energy of the highest-
energy conformer already in the bank, Emax. If Etrial \ Emax, then the
offspring is a candidate for entry into the bank, and the dihedral angle values
of the offspring are compared with the values for all current bank conformers
to identify the closest conformer in dihedral angle space. If this minimum
distance between the bank element and the offspring is less than Dcut, then
the offspring belongs to the same group as the nearest bank member. Ad-
ditionally, if the potential energy of the offspring is less than that of the
nearest bank member, it replaces this member; if not, the offspring is
discarded. If the minimum distance is greater than Dcut, then the offspring
represents a new group entirely and it is entered into the bank by deleting the
highest energy element in the bank.

This protocol for the generation of offspring is repeated for new seed
conformations over a preset number of iterations. Care is taken not to select
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any bank element as a seed conformation more than once until each element
currently in the bank has been used as a seed conformation once (similarly
for the second time through the bank). Occasionally, it may be necessary to
increase the size of the bank (and the first bank) by adding a number of new,
random conformations to them. This may occur, for instance, if the number
of iterations reaches a cutoff value without locating the global optimum.

Application of the CSA algorithm to the five-residue met-enkephalin
system employed an initial bank of 50 conformers, and involved three
unrestricted point mutations, three backbone restricted point mutations, two
group crossovers, and two connected group crossovers for each seed con-
formation (Lee et al., 1997). The PEGM was located in each of 100 inde-
pendent runs using, on average, 2600 energy minimizations.

The CSA method was also applied to the 20-residue melittin system.
Although the bank size was preserved at 50, the number of trial
conformations generated per seed conformation was increased to six
random and six restricted point mutations, three group crossovers, and five
connected group crossovers (Lee et al., 1998). The PEGM was located in
only two out of four independent runs. A parallelized version of the CSA
(Lee and Scheraga, 1999), in which the generation of trial conformations and
bank composition is directed by a central processor, successfully located the
global optimum for met-enkephalin in each of 600 independent runs, in
an average of ;35 seconds per run (using 16 processors of an IBM SP2
supercomputer) (Lee and Scheraga, 1999). This algorithm also successfully
located the PEGM for melittin in each of 24 independent runs, with an
average of 49,000 minimizations (245 iterations) required for each run (Lee
and Scheraga, 1999). The average computational requirements for melittin
was 4.5 h (using 32 processors of an IBM SP2 supercomputer).

The aBB global optimization approach

The aBB approach is a general deterministic global optimization method
(Adjiman et al., 1998a,b, 2000; Klepeis et al., 1998, 1999, 2002b; Klepeis
and Floudas, 1999; Floudas, 2000) applicable to a broad range of problems
involving twice-continuously differentiable objective and constraint func-
tions, including the problem of structure prediction in protein folding
(Klepeis et al., 1998, 1999, 2002b; Klepeis and Floudas, 1999). This
algorithm provides a nondecreasing series of lower bounds on the global
optimum, and a nonincreasing series of upper bounds on the optimum, with
these two series ultimately converging to the global optimum value.

The essence of the algorithm lies in the development of lower bounds on
the global minimum through construction of a series of increasingly tight
convex underestimators of the ECEPP/3 energy function. The convex
underestimators, L for the original energy function E, are generated by the
addition of properly scaled quadratic terms (Adjiman et al., 1998a; Klepeis
et al., 2002b):

Here, Nres is the number of residues in the peptide chain, and
fL
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L
i ;v
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i ;c
U
i ;v

U
i ;x
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i give lower and upper bounds on the

variables fi;ci;vi;x
k
i : The a are nonnegative convexification parameters,

which are required to be $�1⁄2 of the minimum eigenvalue of the Hessian of
E over the defined domain (Klepeis et al., 1998; Adjiman et al., 1998a;
Floudas, 2000). The exact calculation of the Hessian (and its minimum
eigenvalue over a particular domain) can be extremely difficult, and many
methods for calculating and providing rigorous estimates of this value have
been studied (Adjiman et al., 1998a; Floudas, 2000). For example, one
method for the rigorous determination of a parameters for general twice
differentiable problems involves interval analysis of Hessian matrices to

calculate bounds on the minimum eigenvalue (Adjiman and Floudas,
1996; Adjiman et al., 1998a,b; Floudas, 2000). The valid convex
underestimator has the following properties (Maranas and Floudas,
1994; Floudas, 2000):

1. L # E over the entire domain.
2. L ¼ E for all points at which every dihedral angle is at either its lower or

upper bound on the domain (corner points).
3. L is convex on the entire domain.
4. The maximal distance between L and E is bounded, and proportional to

both a and to the size of the domain in question.

The properties outlined above ensure that, for a subset of a given domain,
the convex underestimator L will be tighter than it will be on the original
domain, which implies that successive partitioning of the original domain
into smaller regions provides tighter convex underestimators and, therefore,
a nondecreasing lower bounding sequence. Therefore, the aBB algorithm is
implemented (Klepeis et al., 1998, 2002b) through the construction of
a branch and bound tree in which the top node corresponds to the entire
dihedral angle space. The space is partitioned by branching along a dihedral
angle variable with bisection of the bounds for this variable, which produces
two subspaces, each having the same variable bounds as the parent node,
except for the bounds of the branch variable. A convex underestimator is
generated for each subspace, and is subjected to local minimization to
generate a lower bound for each subspace. The dihedral angle values
corresponding to the local minimum of the convex underestimator are taken
as the starting point for a local minimization of the actual ECEPP/3 energy
function for each subspace.

The variable bounds and lower energy bounds corresponding to each of
the two subspaces are entered into a list of regions that is ordered according
to the energy of the lower bound over each region. The value of the lower
bound on the lowest energy region in this list is taken as the initial lower
bound, and the local minimization of the original ECEPP/3 function yielding
the lowest-energy local minimum is stored as the initial upper bound. An
iterative protocol is then applied in which the lowest valued region in the
lower bound list is bisected along a branching variable, convex under-
estimation is applied to both subspaces, and lower and upper bounding min-
imizations are performed in each subspace. This method for lower bound
selection establishes a nondecreasing series of lower bounds on the global
optimum. The energies obtained from the two local minimizations of the
ECEPP/3 function are compared to the previously stored upper bound; if
either is lower, it becomes the new upper bound. In this way, a nonincreasing
series of upper bounds is established. Moreover, if the lower bound on
a region is higher in energy than the current upper bound on the system, it is
not possible for the global minimum to lie in that region, and the region may

be eliminated from further consideration (fathomed). After a finite number of
iterations, the upper and lower bounds will converge to within a preset
tolerance, e, at which point the global optimum has been located, and the
algorithm terminates. Fig. 1 provides a one-dimensional illustration of the
aBB algorithm (Klepeis and Floudas, 1999).

The aBB algorithm has been successful at locating the global minimum
energy solution of met-enkephalin, which was located after ;1050 iterations
and ;1.3 h of processor time (on an HP-C110 processor). The algorithm has
also been used to analyze solvation effects for met-enkephalin, and the
global minimum energy was identified after 2.5 h of processor time (Klepeis
et al., 1998). A substantive review of the aBB and its applications in protein
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structure prediction, dynamics of secondary structure formation, and peptide
docking can be found elsewhere (Klepeis et al., 2002b).

Hybrid global optimization algorithm

The ultimate goal of developing a hybrid global optimization algorithm is to
exploit the beneficial features of two independent algorithms. In other
words, the strengths of each algorithm should be enhanced while attempting
to minimize any weaknesses associated with these algorithms. In particular,
the main strengths of the aBB algorithm are that it provides a theoretical
guarantee of convergence to the global minimum, and a range of possible
values for the global minimum, as well as a set of lower and upper bounds,
are identified. However, the aBB algorithm can be improved on the
computational front as it requires solving the additional lower-bounding
problems over each domain (Klepeis et al., 1998; Floudas et al., 1999). The
CSA algorithm may locate the global optimum relatively quickly (Floudas
et al., 1999; Lee et al., 1997), although the approach is not deterministic and
the method provides only an upper bound on the global optimum. In fact,
unless the global optimum energy is known a priori, the termination criteria
could be regarded as heuristic.

One method for capitalizing on the strengths of the aBB algorithm is to
use conformations identified as solutions to the upper bounding problem
serve as seed conformations or for the generation of offspring in the CSA.
This should push the selection process away from high-energy regions
inasmuch as the minima found in the solutions to the upper bounding
problem are within the region of the problem where it is still feasible that the
global optimum could be located. In addition, the lower-bounding functions
are constructed by appending the ECEPP/3 energy function, and thus map
the low energy regions of the energy function (Klepeis and Floudas, 1999).
Because these underestimators are, in turn, used as starting points for local
minimizations of the ECEPP/3 function (to solve the upper bounding
problem), it follows that the minima so located are more likely to be low in
energy than are minima developed by local minimizations of a random point,
as is the case for the generic CSA algorithm.

Moreover, the initial bank for the CSA portion can be generated by using
local minimum energy conformations identified by the aBB algorithm. This
practice capitalizes on the strengths of the aBB approach outlined above, as

well as helping to promote bank diversity. In other words, due to the
branching along the f and c variables, each minimum originates in
a different subdomain of the full variable space, thus covering a broad range
of dihedral angle space. Using 50 aBB local minima to constitute the initial
CSA bank would therefore represent a way of enforcing initial diversity of
this bank, especially with respect to the most critical variables. This
diversity, in turn, improves the opportunity to construct offspring that will
represent the global minimum energy.

Previous work has shown that a direct integrated and sequential
framework for combining the aBB and CSA algorithms into one hybrid
global optimization approach can be successful at improving computational
performance (Klepeis et al., 2002a). These integrated hybrids are methods in
which one iteration of aBB is followed by one or two iterations of CSA, and
the local minima generated by aBB are used as seed conformations or for the
generation of offspring in the CSA algorithm (Klepeis et al., 2002a). Such
hybrid methods provided substantial improvements in computational
performance over the stand-alone aBB approach while maintaining the
strengths of this deterministic method. However, the parallelized imple-
mentation of such an integrated hybrid would result in large communication
overhead, thereby leading to the development of alternating hybrid
approaches. Along these lines, the current work explores a novel way of
combining the aBB and CSA algorithms such that the features of each
algorithm work in alternating cycles toward solving the structure prediction
in protein folding problem. Upon reviewing the aBB and CSA portions of
the hybrids, a detailed description of the alternating hybrid is presented,
including issues related to parallelization of the algorithm.

aBB portions of hybrid

The specification of the input parameters to the aBB portions of the hybrid
include the definition of dihedral angle variable bounds, as well as the set of
variables that are candidates for branching. More specifically, the domains of
the f and c backbone dihedral angles are considered for branching, whereas
the remaining angles, namely v, x, and u variables, are treated as local
variables during the global optimization search. The bounds for each of the
f and c variables are initially set to �1808# ðf; cÞ# þ1808 whereas the
x variables are set to the values of �1808=Nsym # ðu; xÞ# þ1808=Nsym;

where Nsym gives the symmetry class of the dihedral angle.
The algorithm proceeds by branching on thef and c dihedral angles, with

the choice of which variable to branch on decided by the variable with the
largest current domain. In addition, the a-values used to construct the convex
underestimators are not updated but set as initial parameters, inasmuch as the
determination of these parameters is computationally expensive.

CSA portions of hybrid

The numbers and types of mutations and crossovers used in the CSA
portions of the hybrid algorithms were maintained (Lee et al., 1997) for the
five-residue met-enkephalin; that is, each iteration consisted of three random
point mutations, three restricted point mutations (f, c, and x1 only), two
group crossovers (;1⁄8 of the total dihedral angles), and two connected group
crossovers (;1⁄4 of the total dihedral angles) (Lee et al., 1997). For the 20-
residue melittin system, each iteration consisted of six random point
mutations, six restricted point mutations, three group crossovers, and five
connected group crossovers (Lee and Scheraga, 1999). The form of the
selection and annealing schedule (the schedule by which Dcut is reduced)
will be presented in detail in the sequel. The hybrid runs were programmed
to halt when the lowest energy element in the CSA bank reached the PEGM
(for example, �11.707 kcal/mol for met-enkephalin), or more generally,
when the aBB portion of the algorithm indicated convergence.

Alternating hybrids

In the proposed alternating hybrid global optimization approach, the aBB
and CSA portions of the algorithm are not integrated (that is, one iteration of

FIGURE 1 Illustration of aBB algorithm in one dimension. The domain
is first bisected, and the minima of the convex underestimators in the two
subdomains are located at 1 and 2. 1 and 2 are each projected upward onto
the function and used as starting points for local minimizations of this
function, finding the minima at 3 and 4. 3 is the lower of these, so it is taken
as the system upper bound. Note that the right-hand side of the domain has
a lower bound at 2, which is higher than the system upper bound at 3; this
region is therefore fathomed. Further bisection of the left subdomain occurs.
At this point, the upper and lower bounds converge at point 7—this point is
higher in energy than 5, but lower in energy than 6, meaning that it
represents both the upper and lower bound on the system. This indicates that
7 is the global optimum solution.
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aBB is not followed by one iteration of CSA), but rather the two sides of the
hybrid take turns dominating the behavior of the algorithm. This so-called
alternating hybrid is based on the following procedure. First, the aBB
branch-and-bound tree is set up, and the aBB portion of the algorithm is run
for Nbank iterations. At each iteration, one of the local minima of the po-
tential energy function generated in solving the upper-bounding problem is
stored in a queue. Once Nbank iterations are complete, the queue is emptied
into the initial CSA bank. At this point, the aBB algorithm shuts down
temporarily, and the CSA portion of the hybrid takes over. One con-
formation is withdrawn at random from the CSA bank to serve as the seed
conformation, and the offspring generated from this conformation are sub-
jected to local minimization and entered into the bank (if applicable). This
process is repeated for NCSA iterations (with restrictions on the choice of a
seed to ensure that every element in the bank is chosen once as a seed be-
fore any element is chosen a second time).

At this point, if the global optimum has not been located, the CSA portion
of the algorithm shuts down temporarily, and control returns to the aBB
portion. This proceeds through Nadd more iterations to produce Nadd more
local minima. These minima are then added to the CSA bank, thus increasing
its size by Nadd. Control then returns to the CSA portion of the algorithm,
and the cycle repeats. Care is taken to ensure that all of the new minima
added to the CSA bank are used as seed conformations at least once before
any of the conformers that were already in the bank are again selected as
seed conformations.

Many variants on the alternating hybrid can be implemented by changing
certain parameters within the algorithm. The annealing schedule can vary
according to a number of different functional relationships. Additionally, the
parameters Nbank, NCSA, and Nadd may be varied to change the initial bank
size, number of CSA iterations performed between bank updates, and size of
the bank updates.

Parallelization

Previous results have indicated that the execution time for the CSA
algorithm is roughly proportional to N4:2

var ; where Nvar is the number of
dihedral angle variables in the problem formulation (Lee et al., 1998). This
increase results from two factors—first, a greater number of iterations are
required to search the larger variable space, and second, each iteration is
more time-consuming because the ECEPP/3 function is more complex, and
local minimizations are more computationally expensive (Lee et al., 1998).
A viable alternative for treating larger peptides involved adapting the hybrid
algorithms to run on multiple processors simultaneously. This type of
parallel processing would allow the computational load to be distributed
between many processors, thus reducing the wall clock time required for
a run to converge.

The structure of the alternating hybrid algorithm is especially amenable
to parallelization. Because the aBB and CSA elements of the algorithm are
essentially totally separate, two plausible parallelization schemes present
themselves. In one scheme, a single ‘‘master’’ processor would direct the
operations of the remaining ‘‘slave’’ processors. The master processor
would set up the aBB branch-and-bound tree and maintain the list of lower-
bounding problems and the CSA bank. However, each node of the aBB
branch-and-bound tree would be solved (that is, upper and lower bounds
on the function in that region would be generated) by one of the slave
processors, having obtained the necessary parameters from the master node.
Similarly, the generation of trial conformations and the local energy
minimization of such conformations for the CSA portion of the algorithm
would also be done by the slave nodes. Each slave processor would alternate
between solving aBB problems and generating and minimizing trial
conformations for CSA.

This approach has the drawback of leading to sizable amounts of idle
time for many of the slave processors. For example, when all of the slaves
are in aBB mode, the first slave to finish solving its assigned node will have
to idle until all the other slaves are finished—it cannot begin work on the
CSA portion of the algorithm, because to set up the CSA bank, it is

necessary to have the results from all of the aBB nodes. This will reduce the
efficiency of the parallelization and extend the required computation time.

A second alternative involves setting up two ‘‘master’’ nodes—an aBB
master and a CSA master node. The slave nodes would then be dedicated to
one of these two masters—that is, a given slave node would perform either
only aBB iterations, or only CSA iterations. Under this setup, while the CSA
nodes are carrying out generation of trail conformations and bank updates,
the aBB nodes could be working independently to solve enough lower-
bounding problems to prepare for the next required update of the CSA bank.
The CSA slaves would be idle at the beginning of the run while they wait for
the aBB slaves to generate an initial bank, but it is not likely that this will
constitute a significant fraction of the overall run time.

This second alternative was used to implement a parallelized version of
the alternating hybrid. A schematic of this implementation is given in Fig. 2.
The algorithm begins in the aBB master processor. This processor performs
bisections of the dihedral angle space (without solving the lower- or upper-
bounding problems on any of the subregions) until enough subregions have
been generated to allocate one to each aBB slave. Each slave is assigned
a single subregion, and receives as data only the bounds of each dihedral
angle variable on this region. The slave solves both the upper and lower
bounding problems on this region, and returns both values to the aBB
master. The aBB master immediately sends the conformations correspond-
ing to the solutions of the upper bounding problem (that is, local minima of
the ECEPP/3 energy function) to the CSA master, which places them in
a first in, first out queue. The aBB master then adds the two new subregions
to the list of lower bounding problems, takes the first subregion off that list,
and assigns that to the slave processor, which just returned its results.

The CSA master processor idles until the length of the queue of aBB
local minima that it is maintaining equals the required initial bank size. At
this time, it empties this queue into the initial bank and begins performing
cycles for the generation of offspring. In each cycle, the CSA master selects
a seed conformation from the bank and performs point mutations, group
crossovers, and connected group crossovers on that seed conformation. Each
trial conformation is sent to one of the CSA slave processors, which per-
forms the local energy minimization and returns the results. The CSA mas-
ter receives these results and updates the bank if necessary. Additionally,
the CSA master maintains a list of which slave processors are available to
receive work. Only when the number of available slaves equals the number
of mutations/crossovers performed per iteration is a new seed conformation
selected and new offspring generated. This undoubtedly adds some amount
of inefficiency to the implementation by requiring some CSA slaves to idle
while they wait for the master to send them their next batch of work. Tests
have revealed, however, that the amount of idle time incurred in this way is
small compared to the time spent in the actual energy minimizations. Finally,
the CSA master constantly communicates with the aBB master, receiving
local minima produced by solving the aBB upper-bounding problem and
storing these on its queue for use when the CSA bank size needs to be
increased.

FIGURE 2 Schematic representation of the methodology used to
construct a parallelized version of the alternating hybrid.
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RESULTS AND DISCUSSION

To provide a basis for comparison between different
methods for locating PEGM structures for peptides, two
peptides have been adopted as test cases. The performances
of different algorithms on the test cases are evaluated and
compared.

Met-enkephalin

The first test peptide used in the current work is met-
enkephalin. Met-enkephalin (H-Tyr-Gly-Gly-Phe-Met-OH)
is a five-residue oligopeptide that occurs naturally in the
human brain and in the pituitary gland. The peptide contains
75 atoms that define 24 dihedral angles. As previously noted,
it has been estimated that there exist ;1011 distinct local
minima of the potential energy function for this protein (Li
and Scheraga, 1988). The putative PEGM for met-enkeph-
alin is �11.707 kcal/mol (Nemethy et al., 1992).

Consistency tests for alternating hybrid

The alternating hybrid algorithm was subjected to extensive
testing to determine the consistency with which it was able to
locate the PEGM of met-enkephalin. The alternating hybrid
algorithm contained three parameters that could be adjusted
—the initial CSA bank size, the number of CSA iterations
performed between bank updates, and the size of the bank
updates. (In practice, the bank update size was always
equivalent to the initial bank size.) Eleven different
combinations of values for these three variables were
chosen, and one alternating hybrid run was performed using
each combination, using met-enkephalin as the test system.
The annealing schedule for each was set as previously
described. However, because the aBB bounds were only
updated during the aBB cycles (and not between CSA
mutations/crossovers), this resulted in the functional de-
pendence of Dcut on the number of CSA iterations taking the
form of a decreasing step function. All runs were allowed to
continue until the PEGM was located; the results of these
tests are given in Table 1.

The alternating hybrid successfully located the global
minimum for met-enkephalin for all 11 sets of operating
parameters chosen. Note that the 20/40/20 (initial bank size/
number of CSA iterations per cycle/size of bank update), 20/
60/20, and 20/100/20 runs showed significantly poorer
performance than any other choice of parameters—each of
these three required both more aBB iterations and more CSA
iterations to achieve convergence than did any of the other
runs. Additionally, the 50/50/50, 50/100/50, and 50/150/50
runs were indistinguishable based upon these tests because
convergence was achieved before a bank update occurred
under any of these parameter choices.

Based upon these initial results, it was decided to choose
five parameter sets for more in-depth consistency testing.

Because they performed poorly in the initial tests, the
alternating hybrids using 20-member banks were not
considered further. Additionally, among the alternating
hybrids using 50-member banks, the one using a 3:1 ratio
of CSA iterations to aBB iterations was selected for further
testing, because, among the hybrids using 5-, 10-, and 20-
member CSA banks, the hybrids with a 3:1 ratio of CSA
iterations to aBB bank size performed best in each case.

Eleven independent runs were performed on each of the
5/15/5, 5/25/5, 10/20/10, 10/30/10, and 50/150/50 hybrids
using met-enkephalin as a test case. To ensure as accurate
a comparison between the different hybrids as possible, the
same set of 11 random number seeds was used for each
hybrids set of 11 runs. For each run, the a-values were set to
7.0, the annealing schedule was set as previously described
(taking the form of a step function here), and the runs were
allowed to continue until the PEGM was located. A summary
of the results from these runs may be found in Table 2.

The global minimum for met-enkephalin was located in all
11 runs for each of the five sets of parameters under
consideration. It can immediately be seen that the 5/15/5 and

TABLE 1 Results for met-enkephalin runs for alternating

hybrids with different operating parameters

Initial bank CSA iter/cycle Bank update Conv aBB iter CSA iter

5 15 5 YES 10 26
5 25 5 YES 10 47

10 20 10 YES 30 56
10 30 10 YES 20 51
10 50 10 YES 20 73

20 40 20 YES 300 562
20 60 20 YES 60 144
20 100 20 YES 60 264

50 50 50 YES 50 16
50 100 50 YES 50 16
50 150 50 YES 50 16

Note that one CSA iteration corresponds to one mutate/crossover-and-
update cycle (generating 10 trial conformers).

TABLE 2 Results of 11 runs on met-enkephalin for each of

five sets of operating parameters for the alternating hybrid

Initial bank size 5 5 10 10 50
Number CSA variations

per cycle
15 25 20 30 150

Size of bank updates 5 5 10 10 50

% of runs converged 100 100 100 100 100

Average aBB iterations 149 51 120 108 63
Maximum aBB iterations 850 120 760 300 100
Median aBB iterations 80 40 60 80 50
Minimum aBB iterations 10 5 10 20 50

Average CSA iterations 440 242 345 204 85
Maximum CSA iterations 2,542 591 2,253 589 194
Median CSA iterations 161 158 158 140 60
Minimum CSA iterations 17 17 21 25 16

All average iteration values are rounded to the nearest whole number.
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10/20/10 hybrids take longer to locate the global minimum
than any of the other hybrids. The 5/15/5 alternating hybrid
requires the most aBB iterations and the most CSA iterations
of any of the five hybrids tested, with the 10/20/10
alternating hybrid requiring the second-most aBB iterations
and the second-most CSA iterations. Additionally, for both
the 5/15/5 and the 10/20/10 alternating hybrids, the average
number of iterations required is more than double the median
number required. This indicates that the performances of
these hybrids were inconsistent. That is, most of the runs
required relatively small numbers of iterations to achieve
convergence, but a few outliers required extremely large
numbers of iterations. It is not surprising that this
inconsistency is found in the algorithms with the combina-
tion of smaller bank sizes and smaller numbers of CSA
iterations per cycle. Smaller bank sizes reduce the chance of
locating the global optimum by limiting the diversity of
conformers that may be included within the bank, and lesser
numbers of CSA iterations per cycle limit the buildup of low-
energy conformers in the bank by constantly diluting the
bank with new members.

The picture is somewhat more complicated for the other
three alternating hybrids (5/25/5, 10/30/10, and 50/150/50).
These three exhibit much lower average numbers of iter-
ations required than the 5/15/5 and 10/20/10 hybrids, and
also much tighter distributions of iterations required, as evi-
denced by the fact that the maximum and minimum numbers
of iterations required are much closer together. Signifi-
cantly, the 50/150/50 hybrid exhibits a very high degree
of consistency among the different runs, with all 11 runs
requiring either 50 or 100 aBB iterations and between 16
and 194 CSA iterations.

It is not possible to determine which of these three hybrids
is the fastest based only upon the data in Table 2. Which
hybrid converges more rapidly depends upon the relative
times required for one aBB iteration and one CSA iteration;
this is explored in the next section.

Computational time comparisons

To accurately assess the relative running times of the various
hybrids, it was necessary to do more than merely examine
the numbers of iterations required for convergence. Iterations
of the aBB portion of the hybrids do not take the same
amount of processor time as iterations of the CSA portion of
the hybrids. This makes a direct comparison based on
iteration numbers impossible for any algorithms that do not
execute identical numbers of aBB and CSA iterations.

To provide a standardized measure of the time required for
one iteration of aBB and one iteration (10 energy
minimizations) of CSA, a time was selected when the
external load on the processor was zero (that is, no other
users were running jobs). Four tests of the pure aBB
algorithm were run for 50 iterations each. The average (wall
clock) running time per cycle ranged from a high of 21.04 s

to a low of 20.00 s, for an average of 20.37 s. Similarly, four
runs of pure CSA were performed, again for 50 iterations
each. The wall clock running time in this case ranged from
a high of 6.60 s per iteration to a low of 5.80 s per iteration,
averaging 6.22 s per iteration. The low variances in both of
these sets of runs give a high degree of assurance that the
values obtained are, in fact, representative of the actual
average running times of one aBB iteration or one CSA
iteration.

With these parameters in hand, it is possible to evaluate
the standardized average running times of each of the hybrids
for which consistency tests on met-enkephalin were
performed. These values are given in Table 3, along with
values obtained for time trials on runs using either only the
aBB portion of the algorithm or runs using only the CSA
portion of the algorithm. Because a single aBB iteration
takes approximately three times as long as a single CSA
iteration, a premium is placed on reducing the number of
aBB iterations that must be performed. This explains why
the 5/25/5 alternating hybrid has relatively low running
times, despite requiring relatively high numbers of CSA
iterations. The 50/150/50 alternating hybrid exhibits by far
the lowest average running time of any of the hybrid
algorithms. This hybrid has the second-lowest aBB iteration
requirement, and requires less than one half the number of
CSA iterations of the next most efficient algorithm. The 50/
150/50 parameter set therefore seems to strike an efficient
balance between the relative times that should be devoted to
each set of algorithmic features.

Naturally, none of the hybrid algorithms would be
especially useful if their average running times exceeded
those required by a pure aBB algorithm. However, even the
slowest hybrid required only 26.5% of the running time of
the pure aBB algorithm, with the fastest (50/150/50
alternating hybrid) requiring ;8.0% of the running time of
the aBB. In contrast, it is not strictly necessary for the
hybrids to converge faster than the pure CSA algorithm,
because they offer advantages, such as a theoretical
guarantee of convergence, and the calculation of a rigorous

TABLE 3 Average running times (for an HP-C160 processor)

on met-enkephalin for hybrid algorithms and for aBB and

CSA algorithms alone

Hybrid
Ave

aBB iter
Ave time
for aBB

Ave
CSA iter

Ave time
for CSA Ave total

5/15/5 149 0: 50: 35 440 0: 45: 36 1: 36: 11
5/25/5 51 0: 17: 18 242 0: 25: 05 0: 42: 23
10/20/10 120 0: 40: 44 345 0: 35: 45 1: 16: 29
10/30/10 108 0: 36: 40 204 0: 21: 08 0: 57: 48
50/150/50 63 0: 21: 23 85 0: 08: 48 0: 29: 11

aBB 1069 6: 02: 55 0 0: 00: 00 6: 02: 55
CSA 0 0: 00: 00 299 0: 30: 58 0: 30: 58

All times are based on 11 independent runs, and are given in hours:
minutes: seconds.
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lower bound on the solution, that are not offered by CSA
alone. In fact, three of the eight hybrids tested require
between 100% and 200% of the running time of the pure
CSA algorithm, making these algorithms significantly
slower than CSA, but not so much slower as to preclude
their use in light of their advantageous theoretical conver-
gence features.

The best hybrid algorithm, the 50/150/50 alternating
hybrid, converged (on average) in only 94% of the time re-
quired for the CSA algorithm to achieve convergence. An
additional set of 10 independent runs performed on the 50/
150/50 hybrid and the pure CSA resulted in the 50/150/50
hybrid requiring ;5% less time to converge than the CSA
required. These results strongly suggest that the alternating
hybrid scheme has the potential to yield convergence in
marginally better time than the CSA alone, although re-
taining the desirable features of guaranteed convergence and
rigorous lower bound calculation.

Met-enkephalin clustering analysis

As previously noted, it is desired that the hybrid algorithms
generate a diverse ensemble of low-energy minima for use in
free-energy calculations. Several methods for free energy
and clustering analysis have been developed, and a number
of these have been applied to the enkephalin system (Klepeis
and Floudas, 1999; Mitsutake et al., 1998; Meirovitch et al.,
1994). As a benchmark of the alternating hybrids’ per-
formance in generating such collections of local minima, a
free-energy analysis and a clustering analysis were per-
formed on a collection of minima taken from a run of the
parallelized 50/150/50 alternating hybrid.

The calculation of free energies for peptide conformers
requires that the entropic contribution to the free energy be
taken into account. One method for evaluating entropic ef-
fects for proteins uses the concept of the harmonic approx-
imation (Go and Scheraga, 1969, 1976; Flory, 1974).
Under this approximation, the entropy associated with a
particular minimum is given by (Klepeis and Floudas, 1999):

Si ¼ � kB

2
lnðDetðHiÞÞ þ f ðTÞ; (5)

where Det(Hi) refers to the determinant of the Hessian
evaluated at the local minimum,kB is the Boltzmann constant,
and f(T) is a function solely of temperature. The f(T) term is
excluded from our calculations when comparing minima at
the same temperature to obtain relative free energies.

With this definition in hand, the Gibbs free energy for
a particular local minima is given by (Klepeis and Floudas,
1999):

Gi ¼ Ei � T � Si ¼ Ei þ 1
2b

lnðDetðHiÞÞ; (6)

where Ei give the energy at the local minimum in question,
and b is equal to 1=kBT:

A Boltzmann distribution may now be used to calculate
the probability that the protein will occupy a given local
minima. The probability that the ith local minimum will be
occupied is given by (Klepeis and Floudas, 1999):

pi ¼
1

DetðHiÞ
� �1=2

e�bEi

+
N
j¼1

1
DetðHjÞ

� �1=2

e�bEj

; (7)

where N represents the total number of minima included in
the calculation, and all other terms are as defined previously.
A clustering analysis is performed by grouping the local
minima based on structural similarity criteria, and calculat-
ing the probability that the cluster will be occupied as the
additive sum of the probabilities associated with all elements
within the cluster.

Free-energy and clustering analyses were performed for
a single run of the parallelized 50/150/50 alternating hybrid.
The hybrid was allowed to run for 1000 CSA iterations
(10,000 energy minimizations), and the energy and dihedral
angle values corresponding to the result of each minimization
were stored (even if the conformation generated was not
ultimately entered into the bank). These minima were sorted
to eliminate conformations that appeared multiple times,
with the uniqueness criteria being that two unique con-
formers must differ by at least 508 in at least one dihedral
angle variable. The free energy of each minimum was
calculated using Eq. 6, for a temperature of 300 K. The
minima were then clustered according to their conforma-
tions. Specifically, the Zimmerman conformational codes
(Zimmerman et al., 1977) for the central three residues were
used as a grouping criterion, with all minima having the same
values of these codes being placed into the same cluster.

This analysis located 4428 unique conformers (out of
10,000 total conformers) for use in free energy and
clustering calculations. The free energy minimum was found
to be 14.174 kcal/mol, and both this value and the dihedral
angle values for the free energy minimum conformer are in
agreement with results reported in the literature (Klepeis and
Floudas, 1999). The free energy minimum conformer had
a potential energy contribution of �9.899 kcal/mol—;1.80
kcal/mol higher than the PEGM conformer.

Results of the clustering analysis are presented in Table 4.
These results are in agreement with the literature (Klepeis
and Floudas, 1999) in identifying the CD*A cluster as the
lowest-energy cluster; however, the literature data indicated
that the CD*A cluster (ranked fourth in the present analysis)
was actually the second-lowest energy cluster, and that the
AAA cluster (ranked second in the present analysis), was
actually the third-lowest energy cluster. It is likely that at
least some of this discrepancy originates from the fact that
the previous work (Klepeis and Floudas, 1999) used a data
set containing 88,000 distinct local minima (as compared
with 4428 for the current work). This resulted in a much
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broader coverage of the dihedral angle space, although at the
expense of a greater computational time input. Additionally,
the previous work used minima from a pure aBB run
(Klepeis and Floudas, 1999). As a result, the minima gen-
erated were likely spread more evenly through the dihed-
ral angle space. By contrast, the CSA elements of the hybrid
algorithm are designed to lead to clustering of minima in cer-
tain low-potential-energy regions, at the expense of explor-
ing the remainder of the dihedral angle space. This has the
potential to lead to the underrepresentation of certain clus-
ters in the final analysis. Because the probability of occu-
pation of a particular cluster depends in part upon the number
of conformers in that cluster, this bias could help explain
the discrepancies in the results above.

Melittin

A more complex system is the membrane-bound portion of
the protein melittin. This portion of melittin is a 20-residue
peptide with the amino acid sequence Gly-Ile-Gly-Ala-Val-
Leu-Lys-Val-Leu-Thr-Thr-Gly-Leu-Pro-Ala-Leu-Ile-Ser-Trp-
Ile, and contains 113 independent dihedral angles (Lee et al.,
1998). The number of local minima present on the energy sur-
face for melittin is not known, although it is believed to be
between 1034 and 1054 (Ripoll et al., 1998). The putative
PEGM for this system is �91.02 kcal/mol (Lee et al., 1998).

Because melittin contains ;4.7 times as many dihedral
angle variables as met-enkephalin, an initial estimate that
a CSA algorithm would require 4:74:2 � 665 times as long to
locate the global optimum of melittin as it would to locate the
global optimum of met-enkephalin. Although the 50/150/50
alternating hybrid can locate the PEGM for met-enkephalin
in 29 min, scaling suggests that the algorithm would require
in excess of 13 days to locate the PEGM for melittin. Clearly,
if this were true, the hybrid would not be of practical use for
locating PEGM structures for peptides of this size.

A few short tests using the melittin system sufficed to
demonstrate the timescales that would be involved in
applying the 50/150/50 hybrid to melittin using a single
processor. The 50 aBB iterations required to establish the
initial CSA bank required ;22 h to complete employing

a single processor, or an average of 26 min per iteration. A
single CSA iteration (using 10 trial conformations), required
;8 min to complete in a single processor. A set of 150 such
CSA iterations would therefore require ;20 h to complete in
a single processor.

Parallel computing

The parallelized alternating hybrid detailed earlier was
employed in investigating the larger protein system, melittin,
using an initial CSA bank size of 50, an update size of 50,
and (initially) allowed for 500 CSA iterations between bank
updates. Initially, the annealing schedule was controlled by
the distance between the aBB upper and lower bounds, again
resulting in Dcut varying as a decreasing step function of the
number of iterations performed. For each seed conformation
selected, the algorithm performed six random point muta-
tions, six backbone-restricted point mutations, three group
crossovers, and five connected group crossovers.

Prior studies (Ramachandran and Saisekharan, 1968;
Vasquez et al., 1983; Zimmerman et al., 1977) have
determined that, for amino acids in natural environments,
the physically feasible values for the backbone dihedral
angles are:

�1808#f#�508
�758# c# 1758:

(8)

To avoid expending considerable effort in searching in-
feasible regions of the dihedral angle space, the domain
space of all f and c variables was confined to these feasible
regions in all tests of the parallel algorithm, although these
variable bounds were fully relaxed when solving the upper-
bounding problem. (It is worth noting that precisely these
restrictions and several additional ones were employed in the
CSA implementation (Lee et al., 1997; Lee and Scheraga,
1999).)

With these restrictions on the domains of the f and c
variables in place, another run was performed, again using the
50/500/50 parallelized alternating hybrid. This run located
a minimum value of �90.416 kcal/mol after 530 CSA
iterations (corresponding to ;10, 600 local minimizations)
and after ;9 h of wall-clock running time (on an array of 68
processors—16 Pentium-III 450 MHz processors, and 52
Pentium-III 600 MHz processors). (The algorithm was
allowed to proceed for ;1000 additional iterations, during
which time no lower-energy minima were located.) This value
is;0.6 kcal/mol higher than the PEGM proposed by Scheraga
(Lee et al., 1998; Lee and Scheraga, 1999). However, several
minor changes have been made to the ECEPP/3 energy
account for this difference, and when the conformation
proposed as the PEGM (Lee et al., 1998) is reminimized using
the current force field, it produces an energy of�90.416 kcal/
mol. The set of dihedral angle values in the proposed PEGM
(Lee et al., 1998) is essentially identical to the values found in

TABLE 4 Results for met-enkephalin clustering analysis

at 300 K

Cluster
rank

Zimmerman
code

Number of
conformers

Cluster
probability

Cumulative
probability

1 CD*A 180 0.2279 0.2279
2 AAA 64 0.1850 0.4229
3 C*DE 100 0.1900 0.6129
4 DC*A 192 0.1340 0.7469

All conformers having the same Zimmerman codes (Zimmerman et al.,
1977) for the central three residues were placed in the same cluster. The
clusters are ordered by free energy, with cluster 1 having the lowest free
energy. Probability refers to the additive sums of the Boltzmann occupation
probabilities of all elements in the cluster; cumulative probability refers to
the sum of the probabilities of the cluster and all lower-energy clusters.
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the present run, as can be seen from the data presented in
Table 5. It is therefore taken to be the case that the energy of
the PEGM for melittin is �90.416 kcal/mol.

The progress of the CSA algorithm during the course of
this run was monitored by tracking the energies of the
conformations occupying certain positions in the bank (e.g.,
the lowest-energy element, 10th-lowest-energy element, and
so forth). Fig. 3 provides this data in graphical form.

The most conspicuous feature of this graph is the
precipitous decline in the energies of the elements at all
positions in the bank immediately after iteration 500. This is
a direct result of the fact that Dcut is directly proportional to
the separation between the aBB upper and lower bounds,
and that it is updated only when the bank is updated (that is,
at multiples of 500 iterations). Just before the bank update, at
iteration 499, Dcut was approximately equal to 16508,
whereas immediately after the bank update, at iteration

501, the value of Dcut had fallen to 3858. The consequence of
this is that, before the bank update, the large value of Dcut
resulted in the low-energy regions of the dihedral angle space
being represented by only a few conformers in the bank,
allowing for the presence of many high-energy conforma-
tions. As soon as Dcut was reduced, however, many more
representatives of the low-energy regions of the dihedral
angle space were allowed into the bank simultaneously, re-
sulting in a sudden clustering of the bank elements in these
regions, and a concomitant drop in the energies of re-
presentative bank elements.

Although this implementation successfully located the
PEGM, there are issues to address. Because each seed
conformation is used to generate 20 trial conformers, when
the value of Dcut is suddenly reduced, it is possible that the
bank could quickly become dominated by offspring of only
a few (in theory, as few as five or six) trial conformations.
This would potentially reduce the diversity of the bank, thus
limiting the effectiveness of future crossovers. If bank
conformations lying close to the global optimum (but not
necessarily having extremely low energies) are eliminated in
this sudden bank clustering, it is possible that it will become
difficult to locate the global optimum.

To explore alternatives that might avoid this drawback,
a linear annealing schedule was introduced that was
dependent on the CSA iteration number. The inherent
drawback with such a procedure is that it requires fixing
the schedule a priori, which in turn assumes at least some
knowledge of the system under study. To compensate for
this loss of generality, it was decided to allow the number of
CSA iterations between bank updates to be determined, not
by a fixed number of iterations, but by a fixed number of
rounds. That is, bank updates were set to occur not after 500
iterations, but after five rounds—after each element in the
bank had been used as a seed conformation five times.
Because rounds of iterations take significantly longer when
improvements are being made frequently (because the im-
proved offspring themselves enter the bank and must be
used before the round ends), this formulation delays up-
dating the CSA bank until the elements in the bank are no
longer improving at a rapid pace. Under this formulation,
Dcut was defined by

FIGURE 3 Plot of energies for elements occupying selected positions
within CSA bank as a function of iteration. This test run used a 50/500/50
alternating hybrid to search for the PEGM of melittin; the annealing
schedule took the form of a step function. Note that the PEGM was located at
iteration 530.

TABLE 5 Comparison of backbone dihedral angles (f, c) for

the two PEGM conformers of melittin

Res f c Res f c Res f c Res f c

1 69 �96 11 �74 �43 1 69 �97 11 �75 �41
2 �82 �28 12 �76 �30 2 �82 �28 12 �76 �30
3 �66 �27 13 �148 78 3 �66 �27 13 �147 75
4 �69 �27 14 �69 86 4 �69 �27 14 �69 81
5 �83 �45 15 �154 173 5 �83 �45 15 �150 172
6 �83 72 16 �57 �31 6 �83 72 16 �58 �30
7 �64 �40 17 �56 �45 7 �64 �40 17 �56 �44
8 �66 �41 18 �82 �32 8 �66 �41 18 �82 �32
9 �70 �36 19 �68 �33 9 �70 �36 19 �69 �33

10 �76 �28 20 �79 �46 10 �77 �27 20 �79 �46

The values on the left represent the structure identified in this work. When
reminimization is performed with the starting point given by the second
solution (Lee et al., 1998), the PEGM reported here is generated.

TABLE 6 Results for melittin clustering analysis at 300 K

Zimmerman code
No. of
confs

Cluster
prob

Cumul
prob

AAAAAAAAAAADCEAAAAA 103 0.8931 0.8931
AAAACAAAAAADCEAAAAA 142 0.1031 0.9962

All conformers having the same Zimmerman codes (Zimmerman et al.,
1977) for the central 18 residues (residues 2–19) were placed in the same
cluster. The clusters are ordered by free energy, with cluster 1 having the
lowest free energy. Probability refers to the additive sums of the Boltzmann
occupation probabilities of all elements in the cluster; cumulative
probability refers to the sum of the probabilities of the cluster and all
lower-energy clusters.
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Dcut ¼ Dave

2
� Icurr

Imax

2 � Dave

5

� �
Icurr # Imax

Dave

10
Icurr[Imax;

where Dave represents the initial average distance between
bank elements, Icurr is the current number of iterations since
the last bank update, and Imax is the maximum number of
steps in the annealing schedule.

Two independent runs were conducted using the anneal-
ing schedule described above, and setting Imax equal to 1000.
For both runs, the PEGM at �90.416 kcal/mol was
located—after 930 CSA iterations (18,600 local minimiza-
tions) and ;17 h wall-clock running time in the first run, and
after 1070 CSA iterations (20,140 local minimizations) and
20 h wall-clock running time in the second (on an array of 68
processors—16 Pentium-III 450 MHz processors, and 52
Pentium-III 600 MHz processors).

A graph tracking the energies of selected elements within
the CSA bank for a successful run is given in Fig. 4. One
obvious difference between these results and those shown in
Fig. 3 is the absence of a sharp discontinuity in the energies
of the bank elements. Although this is to be expected for the
run depicted (because no bank size increases occurred during
the run), other runs using the same annealing and update
schedules did not exhibit a sharp discontinuity even at points
where a bank update occurred. Rather, the bank size change
was marked by a more subtle change in the slopes of each of
the energy curves.

Interestingly, although the lower-energy contour plots
exhibit sharp exponential decreases, the exponential de-
creases grow progressively shallower as energy increases,

and in fact the plot for the 50th bank element is practically
linear over a substantial portion of its range (from 100 to 800
iterations.) This reflects the fact that it takes only one or two
extremely favorable mutations/crossovers to lower the
energy of the first or tenth element in the bank by
a substantial amount, and hence these energy plots fall off
rapidly. However, the energy of the 50th element is usually
lowered when a new group enters the bank and the old
highest-energy conformer is replaced with the second-
highest-energy conformer. Because the energy difference
between the 50th and 49th elements is likely to be rather
small (and because this difference remains relatively con-
stant through most of the run, until the elements start be-
coming strongly clustered at iteration 800), it is logical to
expect that the energy of the 50th bank element will decrease
more slowly and in a more linear fashion than the energy of
the first bank element.

Melittin clustering analysis

Free-energy and clustering analyses were performed on data
from an application of the parallelized alternating hybrid to
melittin. Free energy and clustering analyses followed the
procedure previously described, except that clustering was
performed using the Zimmerman codes (Zimmerman et al.,
1977) for the 18 interior residues as the clustering criterion.
The alternating hybrid was set to use a 1000-step linear
annealing schedule and to increase the CSA bank size after
every five rounds of iterations. The energies and dihedral
angle values of each bank element were recorded after every
10 CSA iterations (an attempt to record the energies and di-
hedral angle values of each trial conformer was impractical
owing to the excessive running time this amount of data
would have required for the clustering analysis). The
alternating hybrid located the PEGM conformation after
1070 iterations and was immediately terminated.

A total of 807 unique conformers were identified (out of
;2140 total conformers analyzed); these were subjected to
both free-energy and clustering analyses. The free-energy
analysis (at 300 K) revealed a free-energy minimum of
49.915 kcal/mol; this structure had a Zimmerman code (for
the inner 18 residues) of AAAAAAAAAAADCEAAAAA
and a potential energy contribution of �87.400 kcal/mol
(almost exactly 3.00 kcal/mol higher than the PEGM).

The results of the clustering analysis are given in Table 6.
It can be seen that ;250 of the 807 unique conformers fall
into two clusters having a combined occupation probability
in excess of 99.6%. These two clusters are a-helical in na-
ture, differing only in the conformation at the sixth residue
(leucine). The high occupation probability for these two
clusters strongly suggests that the conformation of melittin is
largely a-helical in nature, with bends at residue 6 and
residues 13–15. This result is consistent with the qualitative
depictions of the native structures (Lee et al., 1998). Note
that the free energy global minimum falls into the lowest-

FIGURE 4 Plot of energies for elements occupying selected positions
within CSA bank as a function of iteration. This test run used an alternating
hybrid with a linear annealing schedule (Imax ¼ 1,000) and a five-round wait
between bank updates. Note that the PEGM was located at iteration 930. No
bank size increases occurred during this run.
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energy cluster. The PEGM has a Zimmerman code of
AAAACAAAAAADCEAAAAA and falls into the second-
lowest-energy cluster. The conformations of the PEGM and
the lowest free energy representative of the lowest-energy
cluster are shown in Fig. 5.

CONCLUSIONS

In this work, the goal was to create an efficient, consistent
procedure that combines desirable elements from the aBB
and CSA algorithms while eliminating or minimizing the
drawbacks associated with these methods. The incorporation
of features from the aBB algorithms provided a theoretical
guarantee of convergence to the global optimum within
a finite number of iterations, whereas features adapted from
the CSA algorithm provided rapid identification of the global
solution and helped to generate large ensembles of low-
energy minima for use in free-energy calculations.

The novel class of hybrid global optimization approaches,
termed as alternating hybrids, cycle between large blocks of
aBB iterations and large blocks of CSA iterations. Analysis
of these runs indicated that alternating hybrids with larger
initial bank sizes and higher ratios of CSA iterations per
cycle to bank size tended to exhibit a greater consistency of
performance, with the numbers of iterations required for
convergence on the various runs falling within a narrow
range, and with no runs requiring an exceptionally large
number of iterations relative to the mean.

The results also revealed that the hybrids exhibited
significant improvements in running time over a pure aBB
algorithm. Moreover, a comparison of the hybrid running
times with the running time for a pure CSA algorithm
revealed that best results were obtained for the 50/150/50
alternating hybrid, which located the met-enkephalin PEGM
in an average of 29.18 min, as opposed to 30.97 min for the
pure CSA algorithm. A second set of 11 independent runs
confirmed that the 50/150/50 alternating hybrid converged,
on average, in 94% of the time required for the CSA
algorithm alone to converge.

A version of the alternating hybrid was adapted to make
use of a distributed, parallel computing environment. Tests

of the parallelized version of the alternating hybrid on
melittin resulted in the location of the global optimum in
each of two independent runs, requiring less than 20 wall
clock h on a set of 68 processors running Linux.

The alternating hybrid algorithm was also shown to
provide ensembles of low-energy minima, a necessity in the
rigorous calculations of entropic contributions for protein
systems. A free-energy and clustering analysis was
performed for both test systems and the results are in
agreement for studies presented in the literature (Klepeis and
Floudas, 1999; Lee et al., 1998).

In conclusion, the alternating hybrid algorithm developed
in this work shows potential as a valuable new global
optimization algorithm that can serve as one tool for treating
the protein structure prediction problem. Although it is not
practical to directly apply any one global optimization
algorithm and simply solve the ab initio structure prediction
in protein folding problem, the aBB-CSA hybrid is able to
combine the most desirable features of two individual
algorithms. With some overhead, the aBB directs the more
rapid CSA such that either convergence or, at the very least,
rigorous upper and lower bounds on the global minimum can
be obtained. Using these deterministically based bounds,
rigorous termination criteria can be imposed, and the need for
multiple stochastic-based runs can be avoided. The use of the
aBB-based hybrid approach in an hierarchical or decompo-
sition scheme for ab initio protein structure prediction has the
added benefit of being able to rigorously treat systems with
nonconvex twice-continuously differentiable constraints.

The authors gratefully acknowledge financial support from the National
Science Foundation and the National Institutes of Health (R01 GM52032).
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