45 research outputs found

    A pilot study evaluating concordance between blood-based and patient-matched tumor molecular testing within pancreatic cancer patients participating in the Know Your Tumor (KYT) initiative

    Get PDF
    Recent improvements in next-generation sequencing (NGS) technology have enabled detection of biomarkers in cell-free DNA in blood and may ultimately replace invasive tissue biopsies. However, a better understanding of the performance of blood-based NGS assays is needed prior to routine clinical use. As part of an IRBapproved molecular profiling registry trial of pancreatic ductal adenocarcinoma (PDA) patients, we facilitated blood-based NGS testing of 34 patients from multiple community-based and high-volume academic oncology practices. 23 of these patients also underwent traditional tumor tissue-based NGS testing. cfDNA was not detected in 9/34 (26%) patients. Overall concordance between blood and tumor tissue NGS assays was low, with only 25% sensitivity of blood-based NGS for tumor tissue NGS. Mutations in KRAS, the major PDA oncogene, were only detected in 10/34 (29%) blood samples, compared to 20/23 (87%) tumor tissue biopsies. The presence of mutations in circulating DNA was associated with reduced overall survival (54% in mutation-positive versus 90% in mutation-negative). Our results suggest that in the setting of previously treated, advanced PDA, liquid biopsies are not yet an adequate substitute for tissue biopsies. Further refinement in defining the optimal patient population and timing of blood sampling may improve the value of a blood-based test. © Pishvaian et al

    A randomized phase II study of SM-88 plus methoxsalen, phenytoin, and sirolimus in patients with metastatic pancreatic cancer treated in the second line and beyond

    Get PDF
    BACKGROUND: This trial explores SM-88 used with methoxsalen, phenytoin, and sirolimus (MPS) in pretreated metastatic pancreatic ductal adenocarcinoma (mPDAC) METHODS: Forty-nine patients were randomized to daily 460 or 920 mg oral SM-88 with MPS (SM-88 Regimen). The primary endpoint was objective response rate (RECIST 1.1). RESULTS: Thirty-seven patients completed ≥ one cycle of SM-88 Regimen (response evaluable population). Disease control rate (DCR), overall survival (OS), and progression-free survival (PFS) did not differ significantly between dose levels. Stable disease was achieved in 9/37 patients (DCR, 24.3%); there were no complete or partial responses. Quality-of-life (QOL) was maintained and trended in favor of 920 mg. SM-88 Regimen was well tolerated; a single patient (1/49) had related grade 3 and 4 adverse events, which later resolved. In the intention-to-treat population of 49 patients, the median overall survival (mOS) was 3.4 months (95% CI: 2.7-4.9 months). Those treated in the second line had an mOS of 8.1 months and a median PFS of 3.8 months. Survival was higher for patients with stable versus progressive disease (any line; mOS: 10.6 months vs. 3.9 months; p = 0.01). CONCLUSIONS: SM-88 Regimen has a favorable safety profile with encouraging QOL effects, disease control, and survival trends. This regimen should be explored in the second-line treatment of patients with mPDAC. CLINICALTRIALS: gov Identifier: NCT03512756

    Influence of orbital character on the ground state electronic properties in the van Der Waals transition metal iodides VI3 and CrI3

    Get PDF
    This work was performed in the framework of the Nanoscience Foundry and Fine Analysis (NFFA-MUR Italy) facility and was supported by JST-CREST (No. JPMJCR18T1). A part of the computation in this work, using the VASP code (43) in the GGA approximation (44), was performed by using the facilities of the Supercomputer Center, the Institute for Solid State Physics, the University of Tokyo and MASAMUNE-IMR, Center for Computational Materials Science, Institute for Materials Research, Tohoku University (Project No. 20K0045).Two-dimensional van der Waals magnetic semiconductors display emergent chemical and physical properties and hold promise for novel optical, electronic and magnetic “few-layers” functionalities. Transition-metal iodides such as CrI3 and VI3 are relevant for future electronic and spintronic applications; however, detailed experimental information on their ground state electronic properties is lacking often due to their challenging chemical environment. By combining X-ray electron spectroscopies and first-principles calculations, we report a complete determination of CrI3 and VI3 electronic ground states. We show that the transition metal-induced orbital filling drives the stabilization of distinct electronic phases: a wide bandgap in CrI3 and a Mott insulating state in VI3. Comparison of surface-sensitive (angular-resolved photoemission spectroscopy) and bulk-sensitive (X-ray absorption spectroscopy) measurements in VI3 reveals a surface-only V2+ oxidation state, suggesting that ground state electronic properties are strongly influenced by dimensionality effects. Our results have direct implications in band engineering and layer-dependent properties of two-dimensional systems.Publisher PDFPeer reviewe

    90Y-clivatuzumab tetraxetan with or without low-dose gemcitabine: A phase Ib study in patients with metastatic pancreatic cancer after two or more prior therapies

    Get PDF
    AbstractBackgroundFor patients with metastatic pancreatic adenocarcinoma, there are no approved or established treatments beyond the 2nd line. A Phase Ib study of fractionated radioimmunotherapy was undertaken in this setting, administering 90Y-clivatuzumab tetraxetan (yttrium-90-radiolabelled humanised antibody targeting pancreatic adenocarcinoma mucin) with or without low radiosensitising doses of gemcitabine.MethodsFifty-eight patients with three (2–7) median prior treatments were treated on Arm A (N=29, 90Y-clivatuzumab tetraxetan, weekly 6.5mCi/m2doses×3, plus gemcitabine, weekly 200mg/m2 doses×4 starting 1week earlier) or Arm B (N=29, 90Y-clivatuzumab tetraxetan alone, weekly 6.5mCi/m2doses×3), repeating cycles after 4-week delays. Safety was the primary endpoint; efficacy was also evaluated.ResultsCytopaenias (predominantly transient thrombocytopenia) were the only significant toxicities. Fifty-three patients (27 Arm A, 26 Arm B, 91% overall) completed ⩾1 full treatment cycles, with 23 (12 Arm A, 11 Arm B; 40%) receiving multiple cycles, including seven (6 Arm A, 1 Arm B; 12%) given 3–9 cycles. Two patients in Arm A had partial responses by RECIST criteria. Kaplan–Meier overall survival (OS) appeared improved in Arm A versus B (hazard ratio [HR] 0.55, 95% CI: 0.29–0.86; P=0.017, log-rank) and the median OS for Arm A versus Arm B increased to 7.9 versus 3.4months with multiple cycles (HR 0.32, P=0.004), including three patients in Arm A surviving >1year.ConclusionsClinical studies of 90Y-clivatuzumab tetraxetan combined with low-dose gemcitabine appear feasible in metastatic pancreatic cancer patients beyond 2nd line and a Phase III trial of this combination is now underway in this setting

    No evidence for association with APOL1 kidney disease risk alleles and Human African Trypanosomiasis in two Ugandan populations:

    Get PDF
    Human African trypanosomiasis (HAT) manifests as an acute form caused by Trypanosoma brucei rhodesiense (Tbr) and a chronic form caused by Trypanosoma brucei gambiense (Tbg). Previous studies have suggested a host genetic role in infection outcomes, particularly for APOL1. We have undertaken a candidate gene association studies (CGAS) in a Ugandan Tbr and a Tbg HAT endemic area, to determine whether polymorphisms in IL10, IL8, IL4, HLAG, TNFA, TNX4LB, IL6, IFNG, MIF, APOL1, HLAA, IL1B, IL4R, IL12B, IL12R, HP, HPR, and CFH have a role in HAT

    Semiconductor Spintronics

    Full text link
    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin or magnetism. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin injection, Silsbee-Johnson spin-charge coupling, and spindependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief reviews of relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure

    Alternating Gemcitabine/Nab-Paclitaxel (GA) and 5-FU/Leucovorin/Irinotecan (FOLFIRI) as First-Line Treatment for De Novo Metastatic Pancreatic Cancer (MPC): Safety and Effect

    No full text
    Background: Both gemcitabine- and 5-fluorouracil (5-FU)-based chemotherapy regimens have demonstrated efficacy in metastatic pancreatic cancer (MPC). Alternating these regimens may reduce toxicity, slow resistant cancer biology emergence, and provide a platform for the addition of other therapeutic agents. Alternating gemcitabine/nab-paclitaxel (GA) and 5-FU/leucovorin/irinotecan (FOLFIRI) in MPC has previously been reported at our own institution and elsewhere. An extension of our institutional observations is reported here. Methods: Patient eligibility required the following: biopsy-proven de novo MPC, no prior evidence of disease on CT, ECOG performance status (PS) ≤ 2, and bi-dimensionally measurable disease. Treatment (Tx) entailed gemcitabine 1000 mg/m2 and nab-paclitaxel 125 mg/m2 1, (8), 15 alternating every 8 weeks (2 cycles) with FOLFIRI using standard dosing. Patients were radiographically re-staged every 8 weeks. Tx spanned up to 12 cycles. Tx thereafter was decided following patient/physician discussion. Results: Median overall survival (mOS) was 13.2 months (95% CI 10.9–16.5 months). Median progression-free survival (mPFS) was 8.5 months (95% CI, 7.1–9.9). The 6-, 12-, 18-, and 24-month OS rates were 88%, 54%, 36%, and 20%, respectively. The disease control rate at 16 weeks was 83% (37% PR, 46% SD). Hematologic toxicity grade ≥ 3 included 9.3% anemia, 10.2% neutropenia, and 4.6% thrombocytopenia. Neutrophil growth factors were not used in this cohort. Non-hematologic toxicities grade ≥ 3 included neuropathy 0.9%, nausea/vomiting 0.9%, and diarrhea 0.9%. No patients experienced mucositis on this regimen. Conclusions: Alternating GA/FOLFIRI in MPC has a favorable toxicity profile in comparison to current standard regimens. Median OS was at least competitive with standard regimens, and longer-term (18 and 24 months) OS seemed particularly encouraging. Treatment for ≥48 weeks and ECOG PS of zero at the time of treatment initiation were prognostically significant. Further investigation using this regimen including randomized comparisons, the incorporation of molecular data, and use of additional agents is merited
    corecore