1,223 research outputs found

    Neutron diffraction study of lunar materials Final report

    Get PDF
    Apollo 12 lunar samples studied with neutron diffraction at room and cryogenic temperature

    A parameterization of Greenland's tip jets suitable for ocean or coupled climate models

    Get PDF
    Greenland's tip jets are low-level, high wind speed jets forced by an interaction of the synoptic-scale atmospheric flow and the steep, high orography of Greenland. These jets are thought to play an important role in both preconditioning for, and triggering of, open-ocean convection in the Irminger Sea. However, the relatively small spatial scale of the jets prevents their accurate representation in the relatively low resolution (~1 degree) atmospheric (re-)analyses which are typically used to force ocean general circulation models (e.g. ECMWF ERA-40 and NCEP reanalyses, or products based on these). Here we present a method of ‘bogussing’ Greenland's tip jets into such surface wind fields and thus, via bulk flux formulae, into the air-sea turbulent flux fields. In this way the full impact of these mesoscale tip jets can be incorporated in any ocean general circulation model of sufficient resolution. The tip jet parameterization is relatively simple, making use of observed linear gradients in wind speed along and across the jet, but is shown to be accurate to a few m s-1 on average. The inclusion of tip jets results in a large local increase in both the heat and momentum fluxes. When applied to a 1-dimensional mixed-layer model this results in a deepening of the winter mixed-layer of over 300 m. The parameterization scheme only requires 10 meter wind speed and mean sea level pressure as input fields; thus it is also suitable for incorporation into a coupled atmosphere-ocean climate model at the coupling stage

    Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation

    Get PDF
    Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 2207-2227, doi:10.1175/jpo3178.1.The overturning and horizontal circulations of the Labrador Sea are deduced from a composite vertical section across the basin. The data come from the late-spring/early-summer occupations of the World Ocean Circulation Experiment (WOCE) AR7W line, during the years 1990–97. This time period was chosen because it corresponded to intense wintertime convection—the deepest and densest in the historical record—suggesting that the North Atlantic meridional overturning circulation (MOC) would be maximally impacted. The composite geostrophic velocity section was referenced using a mean lateral velocity profile from float data and then subsequently adjusted to balance mass. The analysis was done in depth space to determine the net sinking that results from convection and in density space to determine the diapycnal mass flux (i.e., the transformation of light water to Labrador Sea Water). The mean overturning cell is calculated to be 1 Sv (1 Sv ≡ 106 m3 s−1), as compared with a horizontal gyre of 18 Sv. The total water mass transformation is 2 Sv. These values are consistent with recent modeling results. The diagnosed heat flux of 37.6 TW is found to result predominantly from the horizontal circulation, both in depth space and density space. These results suggest that the North Atlantic MOC is not largely impacted by deep convection in the Labrador Sea.This work was funded by the National Science Foundation through Grants OCE-0450658 (RP) and OCE-024978 (MS)

    Characteristics and dynamics of two major Greenland glacial fjords

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 3767–3791, doi:10.1002/2013JC009786.The circulation regimes of two major outlet glacial fjords in southeastern Greenland, Sermilik Fjord (SF) and Kangerdlugssuaq Fjord (KF), are investigated using data collected in summer 2009. The two fjords show similar flow patterns, with a time-dependent, vertically sheared flow structure dominating over the background estuarine flow driven by buoyancy input. We show that this time-dependent flow is consistent with circulation induced by density interface fluctuations at the fjord mouth, often referred to as intermediary circulation. One difference between the fjords is that the hydrographic and velocity structure below a surface modified layer is found to be three layer in KF in summer, compared to two layer in SF. Outside each fjord, large-scale geostrophic currents dictate the stratification at the mouth, although the way in which these large-scale flows impinge on each fjord is distinct. Combining the observations with estimates from existing theories, we find the magnitudes of the estuarine (Qe) and intermediary (Qi) circulation and show that Qi >> Qe, although along-fjord winds can also be significant. We expect that the critical parameter determining Qi/Qe is the sill depth compared to the fjord depth, with shallower sills corresponding to weaker intermediary circulation. Finally, we discuss the implications of strong intermediary circulation on calculating heat transport to the glacier face and its potential feedbacks on the background circulation in these highly stratified estuaries.Funding for this work came from National Science Foundation OPP grant 0909373 and OCE grants 1130008 (D.A.S. and F.S.) and 0959381 (R.P.), and the WHOI Arctic Research Initiative (FS).2014-12-1

    Evidence for an antiferromagnetic component in the magnetic structure of ZrZn2

    Full text link
    Zero-field muon spin rotation experiments provide evidence for an antiferromagnetic component in the magnetic structure of the intermetallics ZrZn2.Comment: 5 pages, 2 figure

    Western Arctic shelfbreak eddies : formation and transport

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1644-1668, doi:10.1175/2007JPO3829.1.The mean structure and time-dependent behavior of the shelfbreak jet along the southern Beaufort Sea, and its ability to transport properties into the basin interior via eddies are explored using high-resolution mooring data and an idealized numerical model. The analysis focuses on springtime, when weakly stratified winter-transformed Pacific water is being advected out of the Chukchi Sea. When winds are weak, the observed jet is bottom trapped with a low potential vorticity core and has maximum mean velocities of O(25 cm s−1) and an eastward transport of 0.42 Sv (1 Sv ≡ 106 m3 s−1). Despite the absence of winds, the current is highly time dependent, with relative vorticity and twisting vorticity often important components of the Ertel potential vorticity. An idealized primitive equation model forced by dense, weakly stratified waters flowing off a shelf produces a mean middepth boundary current similar in structure to that observed at the mooring site. The model boundary current is also highly variable, and produces numerous strong, small anticyclonic eddies that transport the shelf water into the basin interior. Analysis of the energy conversion terms in both the mooring data and the numerical model indicates that the eddies are formed via baroclinic instability of the boundary current. The structure of the eddies in the basin interior compares well with observations from drifting ice platforms. The results suggest that eddies shed from the shelfbreak jet contribute significantly to the offshore flux of heat, salt, and other properties, and are likely important for the ventilation of the halocline in the western Arctic Ocean. Interaction with an anticyclonic basin-scale circulation, meant to represent the Beaufort gyre, enhances the offshore transport of shelf water and results in a loss of mass transport from the shelfbreak jet.This study was supported by the National Science Foundation Office of Polar Programs under Grants 0421904 and 035268 (MS), and by the Office of Naval Research Grant N00014-02-1-0317 (RP and PF). Analysis by AJP was supported by the Office of Naval Research under Grant N00014-97-1-0135 and by the National Science Foundation under Grant OPP-9815303

    Buoy observations from the windiest location in the world ocean, Cape Farewell, Greenland

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L18802, doi:10.1029/2008GL034845.Cape Farewell, Greenland's southernmost point, is a region of significant interest in the meteorological and oceanographic communities in that atmospheric flow distortion associated with the high topography of the region leads to a number of high wind speed jets. The resulting large air-sea fluxes of momentum and buoyancy have a dramatic impact on the region's weather and ocean circulation. Here the first in-situ observations of the surface meteorology in the region, collected from an instrumented buoy, are presented. The buoy wind speeds are compared to 10 m wind speeds from the QuikSCAT satellite and the North American Regional Reanalysis (NARR). We show that the QuikSCAT retrievals have a high wind speed bias that is absent from the NARR winds. The spatial characteristics of the high wind speed events are also presented.The support of the Canadian Foundation for Climate and Atmospheric Science, the support of the National Science Foundation grant OCE-0450658as well as the Natural Environmental Research Council grant NE/C003365/1

    Corrigendum

    Get PDF
    Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 1910–1914, doi:10.1175/2010JPO4483.1.Corrigendum: Spall, M. A., R. S. Pickart, P. S. Fratantoni, and A. J. Plueddemann, 2008: Western Arctic shelfbreak eddies: Formation and transport. J. Phys. Oceanogr., 38, 1644–166
    • …
    corecore