202 research outputs found

    Efficacy of N-acetyl cysteine in traumatic brain injury

    Get PDF
    In this study, using two different injury models in two different species, we found that early post-injury treatment with NAcetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting [1], to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI). For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30-60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man

    Understanding and optimising patient and public involvement in trial oversight: an ethnographic study of eight clinical trials

    Get PDF
    BACKGROUND: Trial oversight is important for trial governance and conduct. Patients and/or lay members of the public are increasingly included in trial oversight committees, influenced by international patient and public involvement (PPI) initiatives to improve the quality and relevance of research. However, there is a lack of guidance on how to undertake PPI in trial oversight and tokenistic PPI remains an issue. This paper explores how PPI functions in existing trial oversight committees and provides recommendations to optimise PPI in future trials. This was part of a larger study investigating the role and function of oversight committees in trials facing challenges. METHODS: Using an ethnographic study design, we observed oversight meetings of eight UK trials and conducted semi-structured interviews with members of their trial steering committees (TSCs) and trial management groups (TMGs) including public contributors, trial sponsors and funders. Thematic analysis of data was undertaken, with findings integrated to provide a multi-perspective account of how PPI functions in trial oversight. RESULTS: Eight TSC and six TMG meetings from eight trials were observed, and 66 semi-structured interviews conducted with 52 purposively sampled oversight group members, including three public contributors. PPI was reported as beneficial in trial oversight, with public members contributing a patient voice and fulfilling a patient advocacy role. However, public contributors were not always active at oversight meetings and were sometimes felt to have a tokenistic role, with trialists reporting a lack of understanding of how to undertake PPI in trial oversight. To optimise PPI in trial oversight, the following areas were highlighted: the importance of planning effective strategies to recruit public contributors; considering the level of oversight and stage(s) of trial to include PPI; support for public contributors by the trial team between and during oversight meetings. CONCLUSIONS: We present evidence-based recommendations to inform future PPI in trial oversight. Consideration should be given at trial design stage on how to recruit and involve public contributors within trial oversight, as well as support and mentorship for both public contributors and trialists (in how to undertake PPI effectively). Findings from this study further strengthen the evidence base on facilitating meaningful PPI within clinical trials

    Intrinsic activity in the fly brain gates visual information during behavioral choices

    Get PDF
    The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals

    Institutional Mergers in Ireland

    Get PDF
    The importance of knowledge as a driver of social and economic growth and prosperity, and the increasingly competitive β€œglobal race for knowledge and talent” (Hazelkorn, Higher Educ Manage Policy 21(1):55–76, 2009) have combined to transform the higher education landscape, forcing national governments and higher education institutions (HEIs) to pursue new ways of addressing the challenges of a multi-polar world order. Rising demand for higher education (HE), as part of the broader shift from elite to mass to universal participation, has led to the emergence of new models of provision. At the same time, many governments face restrictions on public resources due to high levels of public and private debt; accordingly, system-level and institutional restructuring has been contemplated as a way to enhance quality, performance and efficiency

    Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila

    Get PDF
    Wide-field motion-sensitive neurons in the lobula plate (lobula plate tangential cells, LPTCs) of the fly have been studied for decades. However, it has never been conclusively shown which cells constitute their major presynaptic elements. LPTCs are supposed to be rendered directionally selective by integrating excitatory as well as inhibitory input from many local motion detectors. Based on their stratification in the different layers of the lobula plate, the columnar cells T4 and T5 are likely candidates to provide some of this input. To study their role in motion detection, we performed whole-cell recordings from LPTCs in Drosophila with T4 and T5 cells blocked using two different genetically encoded tools. In these flies, motion responses were abolished, while flicker responses largely remained. We thus demonstrate that T4 and T5 cells indeed represent those columnar cells that provide directionally selective motion information to LPTCs. Contrary to previous assumptions, flicker responses seem to be largely mediated by a third, independent pathway. This work thus represents a further step towards elucidating the complete motion detection circuitry of the fly

    The influence of traits associated with autism spectrum disorder (ASD) on the detection of fake news.

    Get PDF
    It has been suggested that neuro-diverse individuals may be particularly good at detecting online deception (Pick 2019). A small-scale exploratory study was conducted to investigate whether individuals with traits associated with Autism Spectrum Disorder (ASD) were more or less accurate in spotting different types of fake news. A non-clinical sample of university students completed an online identification task, where both fake and real articles items were manipulated in terms of their emotive content. When individuals with low and high scores on the Autism-Spectrum Quotient (Baron-Cohen et al. 2001) were compared, there were no significant main effects on detection accuracy. However, there were two significant interactions, indicating an interesting relationship between message emotiveness, ASD and fake news detection. The results contribute to an understanding of how psychological differences, in particular ASD, may affect online judgements and will contribute to a developing body of work relating positive skills of neuro-diverse individuals to the cybersecurity industry

    Colorful Niches of Phytoplankton Shaped by the Spatial Connectivity in a Large River Ecosystem: A Riverscape Perspective

    Get PDF
    Large rivers represent a significant component of inland waters and are considered sentinels and integrators of terrestrial and atmospheric processes. They represent hotspots for the transport and processing of organic and inorganic material from the surrounding landscape, which ultimately impacts the bio-optical properties and food webs of the rivers. In large rivers, hydraulic connectivity operates as a major forcing variable to structure the functioning of the riverscape, and–despite increasing interest in large-river studies–riverscape structural properties, such as the underwater spectral regime, and their impact on autotrophic ecological processes remain poorly studied. Here we used the St. Lawrence River to identify the mechanisms structuring the underwater spectral environment and their consequences on pico- and nanophytoplankton communities, which are good biological tracers of environmental changes. Our results, obtained from a 450 km sampling transect, demonstrate that tributaries exert a profound impact on the receiving river’s photosynthetic potential. This occurs mainly through injection of chromophoric dissolved organic matter (CDOM) and non-algal material (tripton). CDOM and tripton in the water column selectively absorbed wavelengths in a gradient from blue to red, and the resulting underwater light climate was in turn a strong driver of the phytoplankton community structure (prokaryote/eukaryote relative and absolute abundances) at scales of many kilometers from the tributary confluence. Our results conclusively demonstrate the proximal impact of watershed properties on underwater spectral composition in a highly dynamic river environment characterized by unique structuring properties such as high directional connectivity, numerous sources and forms of carbon, and a rapidly varying hydrodynamic regime. We surmise that the underwater spectral composition represents a key integrating and structural property of large, heterogeneous river ecosystems and a promising tool to study autotrophic functional properties. It confirms the usefulness of using the riverscape approach to study large-river ecosystems and initiate comparison along latitudinal gradients

    The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy

    Get PDF
    Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the β€˜sativa leaf type’ that we see today in domesticated species

    A Defined, Feeder-Free, Serum-Free System to Generate In Vitro Hematopoietic Progenitors and Differentiated Blood Cells from hESCs and hiPSCs

    Get PDF
    Human ESC and iPSC are an attractive source of cells of high quantity and purity to be used to elucidate early human development processes, for drug discovery, and in clinical cell therapy applications. To efficiently differentiate pluripotent cells into a pure population of hematopoietic progenitors we have developed a new 2-dimentional, defined and highly efficient protocol that avoids the use of feeder cells, serum or embryoid body formation. Here we showed that a single matrix protein in combination with growth factors and a hypoxic environment is sufficient to generate from pluripotent cells hematopoietic progenitors capable of differentiating further in mature cell types of different lineages of the blood system. We tested the differentiation method using hESCs and 9 iPSC lines generated from different tissues. These data indicate the robustness of the protocol providing a valuable tool for the generation of clinical-grade hematopoietic cells from pluripotent cells
    • …
    corecore