19 research outputs found

    The Barracuda Ridge and Tiburon Rise, East of the Lesser Antilles : origin, evolution and geodynamic implications

    No full text
    Les rides de Barracuda et de Tiburon sont deux reliefs sous-marins situĂ©s dans la partie ouest de l'ocĂ©an Atlantique, lĂ  oĂč la lithosphĂšre ocĂ©anique des plaques AmĂ©rique du Nord (NAM) et AmĂ©rique du Sud (SAM) est entraĂźnĂ©e par subduction sous la plaque CaraĂŻbe, formant l'arc volcanique des Petites Antilles et le prisme d’accrĂ©tion de Barbade. Le processus et la pĂ©riode de soulĂšvement conduisant au relief actuel de ces rides (qui semblent ĂȘtre un marqueur important dans l'histoire gĂ©odynamique de la rĂ©gion) sont sujets Ă  dĂ©bat depuis des dĂ©cennies.L’interprĂ©tation de nouvelles donnĂ©es de sismique rĂ©flexion et de bathymĂ©trie multifaisceaux acquises Ă  travers les rides de Barracuda et de Tiburon (campagne Antiplac, 2007 ) a permis de dater les pĂ©riodes de soulĂšvements des rides et rĂ©aliser des reconstructions palĂ©ogĂ©ographiques incluant les flux sĂ©dimentaires majeurs, depuis le CrĂ©tacĂ© jusqu’ Ă  l’Actuel.L’analyse structurale rĂ©vĂšle des phases de rĂ©activations tardives d’anciennes zones de fractures dans un contexte transpressif, conduisant aux surrections des rides de Tiburon et de Barracuda.Les processus gĂ©ologiques possibles impliquĂ©s dans la formation des rides de Barracuda et de Tiburon coĂŻncident avec les modĂšles cinĂ©matiques rĂ©cents dĂ©crivant les mouvements relatifs entre les plaques NAM et SAM, le long de la limite de plaque diffuse.Ces rĂ©sultats permettent de mieux dĂ©finir la limite de plaque entre NAM et SAM. Elle est nĂ©cessairement hĂ©tĂ©rogĂšne exploitant les zones de faiblesses dans la lithosphĂšre que sont les zones de fracture. Au sein de cette limite de plaque la lithosphĂšre serait donc fragmentĂ©e.The Barracuda Ridge and the Tiburon Rise, two oceanic-basement ridges, lie in the western Atlantic Ocean, where oceanic lithosphere of the North American (NAM) and South American (SAM) plates is subducted beneath the Caribbean plate, creating the Lesser Antilles volcanic arc and the Barbados Ridge accretionary complex. The process and the timing of the uplift leading to the present day morphologies of the Tiburon and Barracuda ridges, that seem to be key markers in the geodynamic history of the region, has remained a matter of debate for decades.From the analysis of new multibeam and seismic reflection profiles acquired in 2007 (Antiplac crusie) DSDP-ODP boreholes available, we provide new information on the timing of the formation of the Barracuda Ridge and Tiburon Rise in their present-day configurations. We propose paleogeographic reconstructions with the main sediments fluxes deposited in the area of the Barracuda and Tiburon ridges from the Late Cretaceous to present. Structural analysis shows reactivation of fracture zones in a transpressive setting leading to the uplifts of the Barracuda and Tiburon Ridges.The location of the Barracuda Ridge and the Tiburon Rise and the timing of the uplift fit well with recent global plate kinematic models describing the movements of NAM relative to SAM along a diffuse plate boundaryThis NAM-SAM plate boundary zone, therefore must most certainly be heterogeneous in nature, exploiting weaknesses in the lithosphere provided by fracture zones where mechanically advantageous, but forming new boundary segments elsewhere, to transfer motion between reactivated segments of the fracture zones

    Les rides de Barracuda et de Tiburon, à l'Est de la subduction des Petites Antilles : origine, évolution et conséquences géodynamiques

    No full text
    The Barracuda Ridge and the Tiburon Rise, two oceanic-basement ridges, lie in the western Atlantic Ocean, where oceanic lithosphere of the North American (NAM) and South American (SAM) plates is subducted beneath the Caribbean plate, creating the Lesser Antilles volcanic arc and the Barbados Ridge accretionary complex. The process and the timing of the uplift leading to the present day morphologies of the Tiburon and Barracuda ridges, that seem to be key markers in the geodynamic history of the region, has remained a matter of debate for decades.From the analysis of new multibeam and seismic reflection profiles acquired in 2007 (Antiplac crusie) DSDP-ODP boreholes available, we provide new information on the timing of the formation of the Barracuda Ridge and Tiburon Rise in their present-day configurations. We propose paleogeographic reconstructions with the main sediments fluxes deposited in the area of the Barracuda and Tiburon ridges from the Late Cretaceous to present. Structural analysis shows reactivation of fracture zones in a transpressive setting leading to the uplifts of the Barracuda and Tiburon Ridges.The location of the Barracuda Ridge and the Tiburon Rise and the timing of the uplift fit well with recent global plate kinematic models describing the movements of NAM relative to SAM along a diffuse plate boundaryThis NAM-SAM plate boundary zone, therefore must most certainly be heterogeneous in nature, exploiting weaknesses in the lithosphere provided by fracture zones where mechanically advantageous, but forming new boundary segments elsewhere, to transfer motion between reactivated segments of the fracture zones.Les rides de Barracuda et de Tiburon sont deux reliefs sous-marins situĂ©s dans la partie ouest de l'ocĂ©an Atlantique, lĂ  oĂč la lithosphĂšre ocĂ©anique des plaques AmĂ©rique du Nord (NAM) et AmĂ©rique du Sud (SAM) est entraĂźnĂ©e par subduction sous la plaque CaraĂŻbe, formant l'arc volcanique des Petites Antilles et le prisme d’accrĂ©tion de Barbade. Le processus et la pĂ©riode de soulĂšvement conduisant au relief actuel de ces rides (qui semblent ĂȘtre un marqueur important dans l'histoire gĂ©odynamique de la rĂ©gion) sont sujets Ă  dĂ©bat depuis des dĂ©cennies.L’interprĂ©tation de nouvelles donnĂ©es de sismique rĂ©flexion et de bathymĂ©trie multifaisceaux acquises Ă  travers les rides de Barracuda et de Tiburon (campagne Antiplac, 2007 ) a permis de dater les pĂ©riodes de soulĂšvements des rides et rĂ©aliser des reconstructions palĂ©ogĂ©ographiques incluant les flux sĂ©dimentaires majeurs, depuis le CrĂ©tacĂ© jusqu’ Ă  l’Actuel.L’analyse structurale rĂ©vĂšle des phases de rĂ©activations tardives d’anciennes zones de fractures dans un contexte transpressif, conduisant aux surrections des rides de Tiburon et de Barracuda.Les processus gĂ©ologiques possibles impliquĂ©s dans la formation des rides de Barracuda et de Tiburon coĂŻncident avec les modĂšles cinĂ©matiques rĂ©cents dĂ©crivant les mouvements relatifs entre les plaques NAM et SAM, le long de la limite de plaque diffuse.Ces rĂ©sultats permettent de mieux dĂ©finir la limite de plaque entre NAM et SAM. Elle est nĂ©cessairement hĂ©tĂ©rogĂšne exploitant les zones de faiblesses dans la lithosphĂšre que sont les zones de fracture. Au sein de cette limite de plaque la lithosphĂšre serait donc fragmentĂ©e

    Les rides de Barracuda et de Tiburon, à l'Est de la subduction des Petites Antilles (origine, évolution et conséquences géodynamiques)

    No full text
    Les rides de Barracuda et de Tiburon sont deux reliefs sous-marins situĂ©s dans la partie ouest de l'ocĂ©an Atlantique, lĂ  oĂč la lithosphĂšre ocĂ©anique des plaques AmĂ©rique du Nord (NAM) et AmĂ©rique du Sud (SAM) est entraĂźnĂ©e par subduction sous la plaque CaraĂŻbe, formant l'arc volcanique des Petites Antilles et le prisme d accrĂ©tion de Barbade. Le processus et la pĂ©riode de soulĂšvement conduisant au relief actuel de ces rides (qui semblent ĂȘtre un marqueur important dans l'histoire gĂ©odynamique de la rĂ©gion) sont sujets Ă  dĂ©bat depuis des dĂ©cennies.L interprĂ©tation de nouvelles donnĂ©es de sismique rĂ©flexion et de bathymĂ©trie multifaisceaux acquises Ă  travers les rides de Barracuda et de Tiburon (campagne Antiplac, 2007 ) a permis de dater les pĂ©riodes de soulĂšvements des rides et rĂ©aliser des reconstructions palĂ©ogĂ©ographiques incluant les flux sĂ©dimentaires majeurs, depuis le CrĂ©tacĂ© jusqu Ă  l Actuel.L analyse structurale rĂ©vĂšle des phases de rĂ©activations tardives d anciennes zones de fractures dans un contexte transpressif, conduisant aux surrections des rides de Tiburon et de Barracuda.Les processus gĂ©ologiques possibles impliquĂ©s dans la formation des rides de Barracuda et de Tiburon coĂŻncident avec les modĂšles cinĂ©matiques rĂ©cents dĂ©crivant les mouvements relatifs entre les plaques NAM et SAM, le long de la limite de plaque diffuse.Ces rĂ©sultats permettent de mieux dĂ©finir la limite de plaque entre NAM et SAM. Elle est nĂ©cessairement hĂ©tĂ©rogĂšne exploitant les zones de faiblesses dans la lithosphĂšre que sont les zones de fracture. Au sein de cette limite de plaque la lithosphĂšre serait donc fragmentĂ©e.The Barracuda Ridge and the Tiburon Rise, two oceanic-basement ridges, lie in the western Atlantic Ocean, where oceanic lithosphere of the North American (NAM) and South American (SAM) plates is subducted beneath the Caribbean plate, creating the Lesser Antilles volcanic arc and the Barbados Ridge accretionary complex. The process and the timing of the uplift leading to the present day morphologies of the Tiburon and Barracuda ridges, that seem to be key markers in the geodynamic history of the region, has remained a matter of debate for decades.From the analysis of new multibeam and seismic reflection profiles acquired in 2007 (Antiplac crusie) DSDP-ODP boreholes available, we provide new information on the timing of the formation of the Barracuda Ridge and Tiburon Rise in their present-day configurations. We propose paleogeographic reconstructions with the main sediments fluxes deposited in the area of the Barracuda and Tiburon ridges from the Late Cretaceous to present. Structural analysis shows reactivation of fracture zones in a transpressive setting leading to the uplifts of the Barracuda and Tiburon Ridges.The location of the Barracuda Ridge and the Tiburon Rise and the timing of the uplift fit well with recent global plate kinematic models describing the movements of NAM relative to SAM along a diffuse plate boundaryThis NAM-SAM plate boundary zone, therefore must most certainly be heterogeneous in nature, exploiting weaknesses in the lithosphere provided by fracture zones where mechanically advantageous, but forming new boundary segments elsewhere, to transfer motion between reactivated segments of the fracture zones.BREST-SCD-Bib. electronique (290199901) / SudocSudocFranceF

    Pleistocene Mass Transport Deposits Off Barbados Accretionary Prism (Lesser Antilles)

    No full text
    Two Pleistocene mass transport deposits (MTDs), with volumes of thousands of km(3), have been identified from multi-channel seismic data in the abyssal plain at the front of the Barbados accretionary prism. Estimated sediment volumes for these MTDs are likely underestimated due to limited seismic coverage. In this work, we suggest that these MTDs are comparable in size to large submarine landslides as reported in the literature. These MTDs lie on the vicinity of two major oceanic ridges, the Barracuda Ridge and the Tiburon Rise. It is also suggested in this work that the MTDs come from seismicity associated with the formation of the Barracuda Ridge or the Barbados accretionary prism; however, triggering mechanisms involved in their formation remain uncertain. The present study discusses the potential causal factors accounting for the formation of these MTDs

    Seismic structure of the northwestern margin of the South China Sea: implication for asymmetric continental extension

    No full text
    Evolution of the continental margins of the South China Sea (SCS) is one of the open questions when discussing continental breakup and seafloor spreading. We processed data from a wide-angle seismic profile (OBS2011–1), which passes through the northwestern margin of the SCS, and performed travel time modeling to obtain the seismic velocity structures. The modeling results show a stepwise variation of the crustal thicknesses from continental margin to oceanic basin. Stretching factor of the upper crust is nearly double the estimate of the lower crust along the Zhongsha Trough. The lower crust shows asymmetrical upwelling towards the trough center, accompanied by ∌0.3 km/s of the velocity increase due to magmatic addition. The upper and lower crusts have almost the same stretching factor beneath continental blocks, indicating a uniform extension. Crustal structures of the conjugate margins of the Southwest Sub-basin show similar velocity range and different thickness distribution, supporting the common origin and asymmetric extension of these two margins. The Ocean-Continent Transition zones (OCT) are much wider in the southern part (∌50 km) than the northern part (∌25 km) crossing the margins. We propose a tectonic model for the asymmetry of both the conjugate margins and the OCTs, favoring the highly stretched upper crust and accompanied by rising of the ductile middle-lower crust controlled by major low-angle faults. The rigid blocks may also act as a kind of hindrance for further evolution of the failed rifts and affect the shape of the OCT

    How wide is the seismogenic zone of the Lesser Antilles forearc?

    No full text
    The Lesser Antilles subduction zone has produced no recent strong thrust earthquakes, making it difficult to quantify the seismic hazard from such events. The Lesser Antilles arc has a low subduction rate and an accretionary wedge that is very wide at its southern end. To investigate the effect of the wedge on seismogenesis, numerical models of forearc thermal structure were constructed along six transects perpendicular to the arc in order to determine the thermally predicted width of the seismogenic zone. The geometry of each section is constrained by published seismic profiles and crustal models derived from gravity and seismic data and by earthquake hypocenters at depth. A major constraint on the deep part of the model is that mantle temperature beneath the volcanic arc should achieve a temperature of 1,100 degrees C to generate partial melts. Predicted surface heat flow is compared to the available heat flow observations. Thermal modeling results indicate a systematic southward increase in the width of the seismogenic zone, more than doubling in width from north to south and corresponding to a dramatic southward increase in forearc width (distance from the arc to the deformation front of the accretionary wedge). The minimum width of the seismogenic zone (distance between the intersections of the subduction interface with the 150 degrees C and 350 degrees C isotherms) increases from about 80 km, north of 16 degrees N, to 230 km, at 13 degrees N. The maximum width (between the 100 degrees C and 450 degrees C isotherms) ranges from about 150 km in the north to up to 320 km in the south. This large variation in the width of the seismogenic zone is a consequence of the increasing width of the accretionary wedge to the south, caused by the increased thickness of sediment on the subducting plate. There is good agreement between the thermally predicted seismogenic limits and the sparse distribution of recorded thrust earthquakes, which are observed only in the northern portion of the arc. Possible scenarios for mega-thrust earthquakes are discussed. Depending on the segment length (along-strike) of the rupture plane, the occurrence of an event of magnitude 8-9 cannot be excluded.L’absence de grands sĂ©ismes rĂ©cents Ă  mĂ©canismes chevauchants dans la zone de subduction des Petites Antilles rend difficile l’évaluation de l’alĂ©a sismique liĂ© Ă  de tels Ă©vĂ©nements. L’arc des Petites Antilles est caractĂ©risĂ© par une faible vitesse de subduction et par la prĂ©sence d’un prisme d’accrĂ©tion trĂšs dĂ©veloppĂ© Ă  son extrĂ©mitĂ© mĂ©ridionale. Afin d’évaluer les effets de la largeur de ce prisme sur la genĂšse des sĂ©ismes, nous avons Ă©tudiĂ© six sections perpendiculaires Ă  l’arc, du nord au sud de celui-ci, pour dĂ©terminer la largeur de la zone sismogĂšne prĂ©dite par les modĂšles thermiques appliquĂ©s Ă  chacune de ces coupes. La gĂ©omĂ©trie de ces derniĂšres est contrainte par les profils sismiques publiĂ©s, par les modĂšles de structure crustale dĂ©duits des donnĂ©es gravitaires et sismiques, et enfin par la distribution des hypocentres des sĂ©ismes. Un contrĂŽle important permettant de tester la validitĂ© des modĂšles thermiques en profondeur est qu’une tempĂ©rature minimale de 1 100oC, compatible avec la fusion partielle du manteau hydratĂ©, doit ĂȘtre atteinte sous l’arc volcanique actif. Par ailleurs, le flux thermique en surface prĂ©dit par ces modĂšles doit ĂȘtre compatible avec les mesures de flux de chaleur. Les modĂšles thermiques retenus d’aprĂšs ces critĂšres montrent une augmentation du simple au double vers le sud de la largeur de la zone sismogĂšne, qui correspond Ă  un Ă©largissement considĂ©rable de la taille du domaine avant-arc. En effet, la largeur minimale de la zone sismogĂšne (dĂ©finie comme la distance entre les intersections de l’interface des plaques avec les isothermes 150o et 350oC) augmente d’environ 80 km au nord de 16oN jusqu’à 230 km Ă  13oN. La largeur maximale de cette zone (dĂ©finie par les intersections de l’interface avec les isothermes 100o et 450oC) augmente, quant Ă  elle, d’environ 150 km au nord jusqu’à 320 km au sud de l’arc. Cette variation considĂ©rable est la consĂ©quence de l’augmentation de la largeur du prisme d’accrĂ©tion, elle-mĂȘme causĂ©e par l’accumulation croissante des sĂ©diments dĂ©posĂ©s sur la plaque plongeante. Les largeurs de la zone sismogĂšne prĂ©dites Ă  l’aide des modĂšles thermiques sont en bon accord avec les rares donnĂ©es disponibles sur les sĂ©ismes Ă  mĂ©canismes chevauchants dans la partie nord de l’arc. Les scĂ©narios possibles relatifs Ă  des mĂ©ga-sĂ©ismes de ce type n’excluent pas de futurs Ă©vĂ©nements atteignant des magnitudes de 8 Ă  9

    Thermally-constrained fluid circulation and seismicity in the Lesser Antilles subduction zone

    No full text
    International audienceAt subduction zones, fluid circulation and elevated pore pressure are key factors controlling the seismogenic behavior along the plate interface by reducing absolute fault strength, increasing the time return of high magnitude co-seismic rupture and favoring aseismic slip. The Lesser Antilles is an endmember subduction zone where the slow subduction of numerous trans-oceanic fracture zones and patches of pervasively fractured, hydrated and serpentinized exhumed mantle rocks increase the water input. Heat-flow variations measured in the trench and the forearc during the Antithesis 1 cruise reveal heat advection by fluid circulation and shed a new light onto the thermal control of seismicity location in the subduction zone. In the Northern Lesser Antilles, heat-flow anomalies, negative in the trench and positive in the forearc, reveal a ventilated fluid circulation with downward percolation of cold fluids at the sediment-starved, pervasively fractured trench and upward discharge of warm fluids through the Tintamarre Fault Zone in the forearc. In contrast, in the Central Lesser Antilles, a positive heat-flow anomaly at the trench and the accretionary wedge is typical of an insulated fluid circulation where warm fluids invade the plate interface flowing updip from the subduction depths up to the trench. The investigated margin segments correspond with a very low number of interplate thrust earthquakes, illustrating the frequent statement that fluids in subduction zones tend to reduce the interplate coupling, favor slow to aseismic slip behavior, and increase the time return of large seismic events. Moreover, the location of intraslab, and supraslab earthquakes at depth beneath the Central Lesser Antilles suggest a close relation to temperature-related dehydration reactions

    DĂ©collements, Detachments, and Rafts in the Extended Crust of Dangerous Ground, South China Sea: The Role of Inherited Contacts

    Get PDF
    International audienceWe investigate the crustal structure of the Dangerous Ground (South China Sea) through processing and interpretation of coincident wide-angle reflection and refraction seismic data. Continental crust of Dangerous Ground has been moderately thinned, down to 15 km, so that most of the structures accompanying the early opening of the South China Sea from Cretaceous to Miocene have been preserved. Subbasement reflectors as well as refraction velocities image an interpreted dismantled Mesozoic metamorphic unit in the southernmost section of our study area. A rollover structure indicates that the reflective base of the unit was used as a décollement where low-angle normal faults root and blocks rafted. The metamorphic unit is discontinued in a nearby basin located immediately to the north, where the refraction velocity model shows thinning of the crust from 20 to 15 km, with the presence of a 5-km-high mantle dome. In this deeper basin, mass transport deposits are found lying on a strong amplitude basement reflector interpreted as the footwall of an~15 km offset crustal detachment surface that we link down to the mantle dome. We infer that the detachment reactivated an inherited low-angle contact most probably related to the Yanshanian belt. In map view, the reactivated structure forms a half-graben basin oriented NNE-SSW oblique to the generally accepted direction of extension. This orientation follows the general trend of a granitic belt that spanned the South China margin prior to extension, related to the subduction of the Paleo-Pacific
    corecore