44 research outputs found
On the Heisenberg invariance and the Elliptic Poisson tensors
We study different algebraic and geometric properties of Heisenberg invariant
Poisson polynomial quadratic algebras. We show that these algebras are
unimodular. The elliptic Sklyanin-Odesskii-Feigin Poisson algebras
are the main important example. We classify all quadratic
invariant Poisson tensors on with and show that
for they coincide with the elliptic Sklyanin-Odesskii-Feigin Poisson
algebras or with their certain degenerations.Comment: 14 pages, no figures, minor revision, typos correcte
Contribution of TAT System Translocated PhoX to Campylobacter jejuni Phosphate Metabolism and Resilience to Environmental Stresses
Campylobacter jejuni is a common gastrointestinal pathogen that colonizes food animals; it is transmitted via fecal contamination of food, and infections in immune-compromised people are more likely to result in serious long-term illness. Environmental phosphate is likely an important sensor of environmental fitness and the ability to obtain extracellular phosphate is central to the bacteria's core metabolic responses. PhoX is the sole alkaline phosphatase in C. jejuni, a substrate of the TAT transport system. Alkaline phosphatases mediate the hydrolytic removal of inorganic phosphate (Pi) from phospho-organic compounds and thereby contribute significantly to the polyphosphate kinase 1 (ppk1) mediated formation of poly P, a molecule that regulates bacterial response to stresses and virulence. Similarly, deletion of the tatC gene, a key component of the TAT system, results in diverse phenotypes in C. jejuni including reduced stress tolerance and in vivo colonization. Therefore, here we investigated the contribution of phoX in poly P synthesis and in TAT-system mediated responses. The phoX deletion mutant showed significant decrease (P<0.05) in poly P accumulation in stationary phase compared to the wild-type, suggesting that PhoX is a major contributor to the inorganic phosphate pool in the cell which is essential for poly P synthesis. The phoX deletion is sufficient for a nutrient stress defect similar to the defect previously described for the ΔtatC mutant. Additionally, the phoX deletion mutant has increased resistance to certain antimicrobials. The ΔphoX mutant was also moderately defective in invasion and intracellular survival within human intestinal epithelial cells as well as in chicken colonization. Further, the ΔphoX mutant produced increased biofilm that can be rescued with 1 mM inorganic phosphate. The qRT-PCR of the ΔphoX mutant revealed transcriptional changes that suggest potential mechanisms for the increased biofilm phenotype
An Optimization Model for Routing in Low Earth Orbit Satellite Constellations
In the recent years, a large set of satellite constellations has been proposed to address communication services with worldwide coverage and once data is in the sky, a major issue consists of redistributing it on Earth in a proper way
Transient Accumulation of Glycine Betaine and Dynamics of Endogenous Osmolytes in Salt-Stressed Cultures of Sinorhizobium meliloti
The fate of exogenously supplied glycine betaine and the dynamics of endogenous osmolytes were investigated throughout the growth cycle of salt-stressed cultures of strains of Sinorhizobium meliloti which differ in their ability to use glycine betaine as a growth substrate, but not as an osmoprotectant. We present (sup13)C nuclear magnetic resonance spectral and radiotracer evidence which demonstrates that glycine betaine is only transiently accumulated as a cytoplasmic osmolyte in young cultures of wild-type strains 102F34 and RCR2011. Specifically, these strains accumulate glycine betaine as a preferred osmolyte which virtually prevents the accumulation of endogenous osmolytes during the lag and early exponential phases of growth. Then, betaine levels in stressed cells decrease abruptly during the second half of the exponential phase. At this stage, the levels of glutamate and the dipeptide N-acetylglutaminylglutamine amide increase sharply so that the two endogenous solutes supplant glycine betaine in the ageing culture, in which it becomes a minor osmolyte because it is progressively catabolized. Ultimately, glycine betaine disappears when stressed cells reach the stationary phase. At this stage, wild-type strains of S. meliloti also accumulate the disaccharide trehalose as a third major endogenous osmolyte. By contrast, glycine betaine is always the dominant osmolyte and strongly suppresses the buildup of endogenous osmolytes at all stages of the growth cycle of a mutant strain, S. meliloti GMI766, which does not catabolize this exogenous osmoprotectant under any growth conditions
Fonctionnement des grands troupeaux de vaches allaitantes: analyse des déterminants structurels et techniques de l'organisation du travail
National audienc
Assessment of the European flounder responses to chemical stress in the English Channel, considering biomarkers and life history traits
A multi-biomarker approach was developed to evaluate responses of European flounder (Platichthys flesus) in three contrasted estuaries over the English Channel: the Canche (pristine site), Tamar (heavy metals and PAHs contamination) and Seine (heavily pollution with a complex cocktail of contaminants). The condition factor and several biomarkers of the immune system, antioxidant enzymes, energetic metabolism and detoxification processes were investigated in young-of-the-year (0+) and one-year-old (1+) flounder. Results underlined the difference between the pristine site and the Seine estuary which showed a lower condition factor, a modulation of the immune system, a higher Cytochrome C oxidase activity, and an up-regulation of BHMT expression. The moderate biomarker responses in the Tamar fish could be linked to the specific contamination context of this estuary. Flounder life history traits were analyzed by otolith microchemistry, in order to depict how the fish use their habitat and thus respond to chemical stress in estuaries