2,754 research outputs found
The visibility of the Galactic bulge in optical surveys. Application to the Gaia mission
The bulge is a region of the Galaxy which is of tremendous interest for
understanding Galaxy formation. However, measuring photometry and kinematics in
it raises several inherent issues, like high extinction in the visible and
severe crowding. Here we attempt to estimate the problem of the visibility of
the bulge at optical wavelengths, where large CCD mosaics allow to easily cover
wide regions from the ground, and where future astrometric missions are
planned. Assuming the Besancon Galaxy model and high resolution extinction
maps, we estimate the stellar density as a function of longitude, latitude and
apparent magnitude and we deduce the possibility of reaching and measuring
bulge stars. The method is applied to three Gaia instruments, the BBP and MBP
photometers, and the RVS spectrograph. We conclude that, while in the BBP most
of the bulge will be accessible, in the MBP there will be a small but
significant number of regions where bulge stars will be detected and accurately
measured in crowded fields. Assuming that the RVS spectra may be extracted in
moderately crowded fields, the bulge will be accessible in most regions apart
from the strongly absorbed inner plane regions, because of high extinction, and
in low extinction windows like the Baades's window where the crowding is too
severe.Comment: 11 pages, 9 figures, accepted for publication in A&A, latex using A&A
macro
Asymptotic geometry of negatively curved manifolds of finite volume
We study the asymptotic behaviour of simply connected, Riemannian manifolds
of strictly negative curvature admitting a non-uniform lattice . If
the quotient manifold is asymptotically
-pinched, we prove that is divergent and has finite
Bowen-Margulis measure (which is then ergodic and totally conservative with
respect to the geodesic flow); moreover, we show that, in this case, the volume
growth of balls in is asymptotically equivalent to a purely
exponential function , where is the topological
entropy of the geodesic flow of . \linebreak This generalizes Margulis'
celebrated theorem to negatively curved spaces of finite volume. In contrast,
we exhibit examples of lattices in negatively curved spaces (not
asymptotically -pinched) where, depending on the critical exponent of the
parabolic subgroups and on the finiteness of the Bowen-Margulis measure, the
growth function is exponential, lower-exponential or even upper-exponential.Comment: 25 p. This paper replaces arXiv:1503.03971, withdrawn by the authors
due to the Theorem 1.1 whose statement is far from the main subject of the
paper; for the sake of clearness, this new version concentrates only on the
question of volume growth (theorems 1.2, 1.3 and 1.4). Theorem 1.1 of
arXiv:1503.03971 is now the subject of another paper (Signed only by 2
authors Sambusetti and Peign\'e) focused on this rigidity problem with a much
better presentation of the context and another rigidity resul
Phonons Softening in Tip-Stretched Monatomic Nanowires
It has been shown in recent experiments that electronic transport through a
gold monatomic nanowire is dissipative above a threshold voltage due to
excitation of phonons via the electron-phonon interaction. We address that data
by computing, via density functional theory, the zone boundary longitudinal
phonon frequency of a perfect monatomic nanowire during its mechanical
elongation. The theoretical frequency that we find for an ideally strained
nanowire is not compatible with experiment if a uniformly distributed stretch
is assumed. With the help of a semi-empirical Au-Au potential, we model the
realistic nanowire stretching as exerted by two tips. In this model we see that
strain tends to concentrate in the junctions, so that the mean strain of the
nanowire is roughly one half of the ideal value. With this reduced strain, the
calculated phonon softening is in much better agreement with experiment.Comment: 9 pages,3 figures, Surface Science, in pres
A biophysical model explains the spontaneous bursting behavior in the developing retina
During early development, waves of activity propagate across the retina and
play a key role in the proper wiring of the early visual system. During the
stage II these waves are triggered by a transient network of neurons, called
Starburst Amacrine Cells (SACs), showing a bursting activity which disappears
upon further maturation. While several models have attempted to reproduce
retinal waves, none of them is able to mimic the rhythmic autonomous bursting
of individual SACs and reveal how these cells change their intrinsic properties
during development. Here, we introduce a mathematical model, grounded on
biophysics, which enables us to reproduce the bursting activity of SACs and to
propose a plausible, generic and robust, mechanism that generates it. The core
parameters controlling repetitive firing are fast depolarizing -gated
calcium channels and hyperpolarizing -gated potassium channels. The
quiescent phase of bursting is controlled by a slow after hyperpolarization
(sAHP), mediated by calcium-dependent potassium channels. Based on a
bifurcation analysis we show how biophysical parameters, regulating calcium and
potassium activity, control the spontaneously occurring fast oscillatory
activity followed by long refractory periods in individual SACs. We make a
testable experimental prediction on the role of voltage-dependent potassium
channels on the excitability properties of SACs and on the evolution of this
excitability along development. We also propose an explanation on how SACs can
exhibit a large variability in their bursting periods, as observed
experimentally within a SACs network as well as across different species, yet
based on a simple, unique, mechanism. As we discuss, these observations at the
cellular level have a deep impact on the retinal waves description.Comment: 25 pages, 13 figures, submitte
Early Purchaser Involvement in Open Innovation- the case of an advanced purchasing function triggering the absorption of external knowledge in the French automotive industry
International audienceThis paper investigates the mechanisms that trigger the absorption of external knowledge in an innovative French automotive firm. An ethnographic-inspired study conducted by an academic embedded within the Innovation Purchasing Department has enable us to present a rare and new function of Purchasing that plays an important role between potential new suppliers and Research and Development personnel
Theoretical Fluctuations of Conductance in Stretched Monatomic Nanowire
Recent experiments showed that the last, single channel conductance step in
monatomic gold contacts exhibits significant fluctuations as a function of
stretching. From simulations of a stretched gold nanowire linked to deformable
tips, we determine the distribution of the bond lengths between atoms forming
the nanocontact and analyze its influence on the electronic conductance within
a simplified single channel approach. We show that the inhomogeneous
distribution of bond lengths can explain the occurrence and the 5% magnitude of
conductance fluctuations below the quantum conductance unit
Adsorption of Methylene Fluoride and Methylene Chloride at the Surface of Ice under Tropospheric Conditions: A Grand Canonical Monte Carlo Simulation Study
The adsorption of two halogenated methane derivatives, namely, methylene fluoride and methylene chloride, at the surface of Ih ice is studied by grand canonical Monte Carlo simulations under tropospheric conditions. The adsorption isotherms of the two molecules, differing only in the halogen atom type, are found to be markedly different from each other. Thus, while methylene fluoride exhibits multilayer adsorption and its adsorption isotherm belongs to class II according to the IUPAC convention, methylene chloride does not show considerable adsorption at the ice surface, as its condensation well precedes the saturation of even the first adsorbed molecular layer. Interestingly, both the surface orientation and the binding energy of the two types of adsorbed molecules are rather similar to each other; first layer molecules form one single hydrogen bond with the dangling OH groups of the ice surface. The strong differences in the adsorption behavior of methylene fluoride and methylene chloride are traced back to the different cohesions in the liquid phase and, hence, to the strongly different boiling points of the two molecules
Volatile inventories in clathrate hydrates formed in the primordial nebula
Examination of ambient thermodynamic conditions suggest that clathrate
hydrates could exist in the martian permafrost, on the surface and in the
interior of Titan, as well as in other icy satellites. Clathrate hydrates
probably formed in a significant fraction of planetesimals in the solar system.
Thus, these crystalline solids may have been accreted in comets, in the forming
giant planets and in their surrounding satellite systems. In this work, we use
a statistical thermodynamic model to investigate the composition of clathrate
hydrates that may have formed in the primordial nebula. In our approach, we
consider the formation sequence of the different ices occurring during the
cooling of the nebula, a reasonable idealization of the process by which
volatiles are trapped in planetesimals. We then determine the fractional
occupancies of guests in each clathrate hydrate formed at given temperature.
The major ingredient of our model is the description of the guest-clathrate
hydrate interaction by a spherically averaged Kihara potential with a nominal
set of parameters, most of which being fitted on experimental equilibrium data.
Our model allows us to find that Kr, Ar and N can be efficiently encaged in
clathrate hydrates formed at temperatures higher than 48.5 K in the
primitive nebula, instead of forming pure condensates below 30 K. However, we
find at the same time that the determination of the relative abundances of
guest species incorporated in these clathrate hydrates strongly depends on the
choice of the parameters of the Kihara potential and also on the adopted size
of cages. Indeed, testing different potential parameters, we have noted that
even minor dispersions between the different existing sets can lead to
non-negligible variations in the determination of the volatiles trapped in
clathrate hydrates formed in the primordial nebula.Comment: Accepted for publication in Faraday Discussion
- …
