4,949 research outputs found

    Electrodynamics with non-linear constitutive laws and memory effects

    Get PDF
    Maxwell's equations governing the propagation of electro-magnetic fields are considered in conjunction with a class of material relations, which are capable of repre- senting memory effects and time delay

    A simple model for heterogeneous flows of yield stress fluids

    Full text link
    Various experiments evidence spatial heterogeneities in sheared yield stress fluids. To account for heterogeneities in the velocity gradient direction, we use a simple model corresponding to a non-monotonous local constitutive curve and study a simple shear geometry. Different types of boundary conditions are considered. Under controlled macroscopic shear stress Σ\Sigma, we find homogeneous flow in the bulk and a hysteretic macroscopic stress - shear rate curve. Under controlled macroscopic shear rate Γ˙\dot{\Gamma}, shear banding is predicted within a range of values of Γ˙\dot{\Gamma}. For small shear rates, stick slip can also be observed. These qualitative behaviours are robust when changing the boundary conditions.Comment: 13 pages, 13 figure

    Gender homophily from spatial behavior in a primary school: a sociometric study

    Full text link
    We investigate gender homophily in the spatial proximity of children (6 to 12 years old) in a French primary school, using time-resolved data on face-to-face proximity recorded by means of wearable sensors. For strong ties, i.e., for pairs of children who interact more than a defined threshold, we find statistical evidence of gender preference that increases with grade. For weak ties, conversely, gender homophily is negatively correlated with grade for girls, and positively correlated with grade for boys. This different evolution with grade of weak and strong ties exposes a contrasted picture of gender homophily

    Practical quantum realization of the ampere from the electron charge

    Full text link
    One major change of the future revision of the International System of Units (SI) is a new definition of the ampere based on the elementary charge \emph{e}. Replacing the former definition based on Amp\`ere's force law will allow one to fully benefit from quantum physics to realize the ampere. However, a quantum realization of the ampere from \emph{e}, accurate to within 10−810^{-8} in relative value and fulfilling traceability needs, is still missing despite many efforts have been spent for the development of single-electron tunneling devices. Starting again with Ohm's law, applied here in a quantum circuit combining the quantum Hall resistance and Josephson voltage standards with a superconducting cryogenic amplifier, we report on a practical and universal programmable quantum current generator. We demonstrate that currents generated in the milliampere range are quantized in terms of efJef_\mathrm{J} (fJf_\mathrm{J} is the Josephson frequency) with a measurement uncertainty of 10−810^{-8}. This new quantum current source, able to deliver such accurate currents down to the microampere range, can greatly improve the current measurement traceability, as demonstrated with the calibrations of digital ammeters. Beyond, it opens the way to further developments in metrology and in fundamental physics, such as a quantum multimeter or new accurate comparisons to single electron pumps.Comment: 15 pages, 4 figure

    Optimal detection of changepoints with a linear computational cost

    Full text link
    We consider the problem of detecting multiple changepoints in large data sets. Our focus is on applications where the number of changepoints will increase as we collect more data: for example in genetics as we analyse larger regions of the genome, or in finance as we observe time-series over longer periods. We consider the common approach of detecting changepoints through minimising a cost function over possible numbers and locations of changepoints. This includes several established procedures for detecting changing points, such as penalised likelihood and minimum description length. We introduce a new method for finding the minimum of such cost functions and hence the optimal number and location of changepoints that has a computational cost which, under mild conditions, is linear in the number of observations. This compares favourably with existing methods for the same problem whose computational cost can be quadratic or even cubic. In simulation studies we show that our new method can be orders of magnitude faster than these alternative exact methods. We also compare with the Binary Segmentation algorithm for identifying changepoints, showing that the exactness of our approach can lead to substantial improvements in the accuracy of the inferred segmentation of the data.Comment: 25 pages, 4 figures, To appear in Journal of the American Statistical Associatio

    Functional equations and information measures with preference

    Get PDF
    • …
    corecore