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ABSTRACT

The Hull-Strominger System in Complex Geometry

Sébastien Picard

In this work, we study the Hull-Strominger system. New solutions are found on hyperkéahler
fibrations over a Riemann surface. This class of solutions is the first which admits infinitely many
topological types. Next, we study the Fu-Yau solutions of the Hull-Strominger system and their
generalizations to higher dimensions. We solve the Fu-Yau equation in higher dimensions, and
in fact, solve a new class of fully nonlinear elliptic PDE which contains the Fu-Yau equation as
a special case. Lastly, we introduce a geometric flow to study the Hull-Strominger system and
non-Kahler Calabi-Yau threefolds. Basic properties are established, and we study this flow in the
geometric settings of fibrations over a Riemann surface and fibrations over a K3 surface. In both
cases, the flow descends to a nonlinear evolution equation for a scalar function on the base, and we

study the dynamical behavior of these evolution equations.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The central theme of this thesis is to study metrics on manifolds which satisfy an optimal curvature
condition. The principle that metrics can be used to characterize the underlying space is rooted
in tradition, beginning with the Uniformization Theorem of complex analysis. This philosophy
is closely related to theoretical physics, where the principle of least action leads to minimizing

functionals and obtaining an optimality condition.

Since optimal metrics on manifolds are described by a partial differential equation, differential
geometry, and complex geometry in particular, produces interesting examples of nonlinear equa-
tions. Some of the equations arising in this research, such as the Fu-Yau equation and the Anomaly
flow, do not fit into any standard framework or theory of partial differential equations. We are
thus lead to develop new techniques in the field of elliptic and parabolic nonlinear partial differ-
ential equations. The interplay between analytic questions in differential equations and problems

emerging from geometry is at the core of this research.

More specifically, this thesis centers around the Hull-Strominger system of theoretical physics.
This system of differential equations was introduced independently by C. Hull [67, 68] and A.
Strominger [100] as a model for the heterotic string with torsion. From the point of view of
complex geometry, it provides a candidate for canonical metrics in non-Kéahler complex geometry

with a rich underlying structure.

Let X be a compact complex manifold X of dimension three, and let £ — X be a holomorphic

vector bundle. Suppose X has trivial canonical bundle, so that it admits a nowhere vanishing
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holomorphic (3,0) form 2. We also fix a constant o/ € R which we call the slope parameter. The

Hull-Strominger system seeks a pair of metrics (F, H) — (X,w) solving

Fr Aw? =0, (1.1)

/
00w = % (Tr Rm(w) A Rm(w) — Tr Fy A F), (1.2)
d(]|Q| w*) = 0. (1.3)

Here Rm(w), Fy are the endomorphism-valued curvature (1, 1) forms associated to the Chern con-
nection of w, H. The first equation (1.1) is the Hermitian-Yang-Mills equation [22, 117], which
is well-known in complex geometry. The second equation (1.2) is called the anomaly cancellation
equation, and it arises as the Green-Schwarz cancellation mechanism in string theory. As a cur-
vature condition, it is particularly interesting as it is quadratic in the curvature tensor. The third
equation (1.3) is the conformally balanced equation, which we view as an analog of the K&hler con-
dition for Ricci-flat metrics in this non-Kéhler setting, and we will dedicate Chapter 2 to studying
the properties of such metrics.

The Hull-Strominger system generalizes Kihler Ricci-flat metrics if we take E = T19(X).
A well-known conjecture in algebraic geometry expects that there should only be finitely many
topological types of Calabi-Yau threefolds. Physicists conjectured that the same should be true for
threefolds with torsion admitting solutions to the Hull-Strominger system.

In Chapter 3, we introduce new solutions to the Hull-Strominger system in joint work with
T. Fei and Z. Huang [29]. This class of solutions is the first to admit infinitely many different

topological types, and gives a negative answer to the conjecture mentioned above.

Theorem 1. (Fei-Huang-Picard [29]) Let (X, @) be a vanishing spinorial pair with the hemisphere
condition satisfied. Then we may construct explicit solutions to the Strominger system on the
associated generalized Calabi-Gray manifold X. As a consequence, for every genus g > 3, there
exist smooth solutions to the Strominger system on genus g generalized Calabi-Gray manifolds.

They have infinitely many distinct topological types and sets of Hodge numbers.

Another important class of solutions to the Hull-Strominger system are the solutions of Fu and
Yau [42, 43] on torus fibrations over a K3 surface. These were historically the first solutions on

compact threefolds not admitting any Kéahler metric. Fu and Yau introduced an ansatz metric on a



CHAPTER 1. INTRODUCTION

manifold constructed of Calabi-Eckmann-Goldstein-Prokushkin [13, 55] which reduced the system
to a single fully nonlinear PDE for a scalar function on the base K3 surface. The Fu-Yau equation
is

i00(e*w — o’e™p) 4+ o/iddu N i00u + pi® = 0. (1.4)
Here @ is a Kéhler Ricci-flat metric on the K3 surface, p is a given (1,1) form, and p is a given
function which integrates to zero.

In Chapter 4, we study the Fu-Yau equation in higher dimensions, which corresponds to a
version of the Hull-Strominger system on torus fibrations over Calabi-Yau manifolds of general
dimension. Let (Z,®) denote a compact Kahler manifold of any dimension n. We will use the
notation C% = 4!(7?71@! and 64(i00u) ™ = CL (i00u)’ A &"*. Given p € QY1 (Z,R), we define the

differential operator L, acting on functions by
Lyf &™ = nidd(fp) A" 2. (1.5)

Let o/ € R be a fixed slope parameter and i : Z — R be such that fZ,ud)" = 0. For each fixed
ke {1,2,3,...,n— 1} and a real number v > 0, the Fu-Yau Hessian equation is

1

- Agert + o/{Lpe(kV)” + &k+1(i88u)} = L. (1.6)

This equation with £ = 1 and v = 2 was proposed by Fu and Yau [43]. In joint work with D.H.

Phong and X.-W. Zhang, we obtain solutions to this equation.

Theorem 2. (Phong-Picard-Zhang [90]) Let o/ € R, p € QY1 (Z,R), and pu: Z — R be a smooth
function such that [, p&™ = 0. Define the set Ty, by

Ty = {u € C2Z,R): e < 5, ||| iddulk < T} , (1.7)

where 0 < §, 7 < 1 are explicit fizred constants depending only on (Z,0),d, p, u,n, k,~y, whose
expressions are given in Chapter 4. Then there exists My > 1 depending on (Z,0), &', n, k, v, u
and p, such that for each M > My, there exists a unique smooth function u € Y with normalization

[y v @™ =M solving the Fu-Yau Hessian equation (1.6).

Next, in Chapter 5, we introduce a geometric flow to study Calabi-Yau threefolds with torsion.

Let wg be a Hermitian metric on a Calabi-Yau threefold X with Calabi-Yau form 2, and Hy a
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Hermitian metric on a holomorphic vector bundle £ — X. We will study the following flow, which

we call the Anomaly flow, for the pair of metrics (w(t), H(t))

/

H(|Qww?®) = 00w — % (Tr(Rm(w) A Rm(w)) — Tr(F(H) A F(H)))

H'o,H = —A,F(H) (1.8)

with initial condition w(0) = wg, H(0) = Hp. The Anomaly flow was introduced in joint work [89]
with D.H. Phong and X.-W. Zhang.

If we start the flow from a conformally balanced metric, then the metric remains conformally
balanced along the flow, and stationary points are solutions to the Hull-Strominger system. For
fixed w, the flow of metrics H is the Donaldson heat flow [22]. As the Anomaly flow is a flow of
(2,2) forms, it is not immediately clear that these equations give a well-defined flow of the metric
w. We [89, 84] proved that this is indeed the case, and that the Anomaly flow exists for a short
time, provided that |/ Rm(w)| is small initially. The metric tensor g associated to the (1,1) form
w evolves according to

1
OhGpg = ———
= 910,

— Rpg + 9°° 9" T3y Torp — &/ 9° (Rips® 3Rrg)® 0 — (Tt Fyr A Fr)psrg) | (1.9)
where R,;j is the Ricci tensor —0y, (gpl’aj 9gg,) and T, is the torsion tensor 7' = i0w. We note that
this evolution equation for the metric is a non-Kéahler analog of the Kahler-Ricci flow with quadratic
curvature corrections proportional to o'.

In this thesis, we study the Anomaly flow in two special geometric settings, where the flow can
be reduced to a single parabolic PDE for a scalar function. This leads to new nonlinear evolution
equations arising naturally from geometry and physics.

The first equation that we will consider was studied in joint work [28] with T. Fei and Z. Huang.
In Chapter 6, we study the Anomaly flow on certain hyperkahler fibrations over a Riemann surface
3. We call these threefolds generalized Calabi-Gray manifolds. We construct a reference metric

W = igz,dz N dZ on X such that the Anomaly flow reduces to the following single scalar PDE on

the Riemann surface

/

/
orel = §7%0,0:(ef + %ne‘f) — r(el + %/ie_f), (1.10)

where £ € C*°(%,R) is a given function such that £ < 0 and — [ k& = 47 (g — 1). In fact, & is the

Gauss curvature of the metric @. Our theorem is the following.
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Theorem 3. (Fei-Huang-Picard [28]) Start the Anomaly flow on a generalized Calabi-Gray man-
ifold p : X — ¥ with initial metric wy = e*'& + e/w' satisfying |0/ Rm(wy)| < 1. Then the flow
exists for all time and as t — oo,

Y s prws
b
% fX HQwa wff

smoothly, where wy, = ¢ & is a smooth metric on .. Here q1 > 0 is the first eigenfunction of the
operator —Ay+2k. Furthermore, <X, 1||(?2fw3> converges to (X, wy) in the Gromov-Hausdorff
31 Jx 13l p @y
topology.
In Chapter 7, we study the Anomaly flow in another geometric situation where the full system

reduces to a single nonlinear scalar PDE. We consider here torus fibrations over a K3 surface with

the Fu-Yau ansatz [42, 43]. In this case, the Anomaly flow can be reduced to

Oy = % <Awu + a'e "G (i00u) — 2a/6_uw + |Dul? + 6_“u>- (1.11)
W

Here @ is a Kahler-Ricci flat reference metric on the K3 surface, p is a given (1,1) form on the K3
surface, and  is a given function on the K3 surface which integrates to zero.

From the point of view of nonlinear evolution equations, equation (1.11) is very interesting as
it is not concave as a function of the second derivatives of u. The starting point for our study of

this equation is the conservation law

d

— [ e*@" =0. (1.12)
dt J,

This suggests to start with large initial data and try to show that solutions stay large in the L™
norm along the flow via integral estimates. Furthermore, we are able to show that the estimate

|’ e~ %i00u

o < 1 stays preserved along the flow. This is analogous to the condition |/ Rm(w)| < 1
mentioned in Theorem 3.
Using these ideas, together with D.H. Phong and X.-W. Zhang, we prove the following long-time

existence and convergence result.

Theorem 4. (Phong-Picard-Zhang [83]) Consider the flow (1.11), with an initial metric given by
u(0) = log M, where M is a constant. Then there exists My large enough so that for all M > My,
the flow (1.11) exists for all time, and converges exponentially fast to a function us solving the

Fu-Yau equation (1.4) with normalization [y e* = M.
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Chapter 2

Conformally Balanced Calabi-Yau
Manifolds

The role of this chapter is to review conformally balanced Calabi-Yau manifolds. Along the way we

will establish conventions and provide the necessary background needed for subsequent sections.

2.1 Conventions and notation

In this section, we establish notation which will be used through this thesis. Manifolds will always

be assumed to be connected, compact, and without boundary.

2.1.1 Holomorphic vector bundles

We start by reviewing connections on vector bundles. Let ¢ be a (p, ¢)-form on a complex manifold

X. We define its components Pl Fiqii o by
1 . ) L L
Y= pT]' Z PChy-Fogir i dzP A Ad2It AdERa A - A dERL (2.1)

A vector bundle £ — X can be defined by a covering X = Uu U,, of local coordinate charts U,

and transition functions ¢,,“g(x) defined on U, N U, satisfying
tun®s = 0%, tw st (x) =, (x), z€U,NU,NU,. (2.2)

The vector bundle is holomorphic if all transition functions t,,%s are holomorphic. A section

¢ € I'(X,E) is given by vector-valued functions ¢,* on each chart U, satisfying the glueing
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condition
Wua(ﬂfu) = tu'/aﬁ(‘%)%@vﬁ(%) on U, NU,. (2.3)

A section of the dual bundle ¢ € I'(X, E*) transforms as

(90#)04 = tuuﬁa(g)u)ﬁ- (2.4)

A connection on E can be specified by a collection {U, (Ay)i} which transform in the following
way

(Au)j = tuw (Av)j tay — (Ot )t - (2.5)

Given a section V of a vector bundle E, a connection allows us to define VzV € I'( X, E) for each
vector field Z. Locally
ViV =0,V + A%, V7. (2.6)

We can induce connections on various bundles constructed from E by imposing product and chain

rules. The induced connection on E* satisfies
ViVa = 0iVa — A7 V5. (2.7)
This is equivalent to the Leibniz rule
9i(¢™Ya) = Vio"tha + ¢*Vitha, (2.8)

for p € I'(X,E) and ¢ € I'(X, E*). Similarly, the induced connection on End(E) = E ® E* is
given by
ViWes = 0;We + A% W73 — A7;sW7,, (2.9)

which is equivalent to the Leibniz rule
81'(Wa5<pﬁ) = ViWag(pﬁ —+ Wa/jvi(pﬁ, (2.10)

for W € T'(X, End(E)) and ¢ € T'(X, E). The curvature form F of (E,V) is an End(FE)-valued
2-form defined by
F=dA+ANA. (2.11)

Using our conventions, the components of the curvature are given by

1 A 1 . .
F = S Fyj®pda’ A dz" + 5 Fr; % A2 A dz" + Fy;%pd2’ A dz”, (2.12)
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where
Fij% = 0;A%3 — A% 5 + A% AV — A% A5, (2.13)
Fij% = 05A%5 — OpA%jp + A%, ATg — A%, ATjp, (2.14)
Fyi%p = 0jA% 5 — OpA%jp + A%y Alpg — A%, AV 5. (2.15)

2.1.2 Hermitian metrics

A Hermitian metric gj; is a smooth section of (THO(X))* @ (T%(X))* such that gr;(p) is a positive
definite Hermitian matrix at each point p € X. We will identify the metric with the positive (1,1)

form w = ig,;,jdzj A dz*. We define its torsion tensor 7' and T by
T = idw, T = —idw (2.16)

which are respectively (2,1) and (1,2) forms. A Hermitian metric w is said to be Kéhler if dw = 0,

and hence the torsion T" is 0 if and only if w is Kéhler. We define the coefficients Tj,, and Tipq by

1 , _1- )
T = Tyjpdz"™ N d2? A dzF, T = 5 Tigmdz™ A dz' A dzF, (2.17)
and thus
Trjm = Oi9km — OmIrjs  Tigm = O59mk — OmGin- (2.18)
We will also use the notation
T jm = 6" Tgjm, (2.19)
and
T = gjkTEjm’ Tm = g;kajm (220)

2.1.3 Chern connection

In this section, we focus on the tangent bundle E = T19(X). Unless specified otherwise, in this
thesis we will use V to denote the Chern connection of the Hermitian metric w = ig,;jdzj A dzF,

defined by the expression

ViVi= 0V, ViV = 0,V + gP0kgp VY, (2.21)
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for any section V of T'%(X). The connection forms Akjm vanish in this case and A*¥;,, will be

denoted T* jm-
T i = 6"0;07,,- (2.22)
We note that
T = ¢ Ty, = T i — Do (2.23)
We induce the Chern connection on (710(X))* as usual by

VWi = 0 Wi, VWi = Wi — T, W, (2.24)
for W € T'(X, TH°(X)*). We also induce the connection on conjugate bundles by taking conjugates;
for example, for V e D(X,T%(X)) we define V;Vi = V,Vi. It can be verified directly that
Vgg; = 0. The curvature of V is given by

Rp?i = —0p(9"0;95:), Rm = Rp;%gdz’ N dz". (2.25)
This leads to the commutation relations
[V, VilWi = =R ;/»iW,, (2.26)
and
[V}, Vi]W; = T, VAW, (2.27)
for any section W of (T19(X))*. Applying these rules gives the following formulas for commuting

three and four covariant derivatives

V]-V,,un = VquVju + Tmpjvquu, (2.28)

ViViVpVau = V,VeVViu — Ry ™V Viu + Ry ™V Vau
+T7 5 VeV Viu + T ViV Vau. (2.29)
For general Hermitian metrics, the Bianchi identities are
Rinkj = Bijem + Vilkjm
Rpnkj = By + VinTrz (2.30)
and
ViRyPe = Vil o + T jmBe"es Vi Rijpg = ViRempg + T jm B

VmR];qu = V;}Rm]‘pq + TfjcmR,:qu, vaEjﬁq = ViRamjpg + TFEmR,:jﬁq. (2.31)
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2.1.4 The adjoint d'

Next, we work out the operators ' and 9 on the space Q' (X) of (1,1)-forms. For this, we will

need the following divergence theorem for Hermitian metrics w. Let V be a section of TH0(X).

Then

/vv%n /TV’

Consider the operator 0 : Q10(X) — Qb1(X). Explicitly,
dajdz?) = Opa;dz* A d2l = —0padz? A dEF.
Therefore,
(0a)g; = =0y
Let ® = ®5,dz? A dzP be a (1,1)-form. The adjoint d is characterized by the equation
(Do, ®) = (a0, 0T D),

which is equivalent to

wn
nl

/( Oraj) pqukgjq /O‘j(gT(I))qgjq
X n! X n

Raising and lowering indices using the metric, this can be rewritten as

—/ v,;(aqqﬂfq)+/ oﬂvk(I)kq:/ aq(éw)q‘i,.
X X X n.

Integrating by parts, we find

(5“1))(1 = gkﬁ(vk@ﬁq - qu’ﬁq)'

Similarly, we work out 07. For a = azdz*, we have da = djazdz? A dz*, so that (0a)g;

Thus, the equation (da, ®) = (a, 9T®) becomes
/ DjoPp qukgjq / a,;(E)T(I))ﬁg”kw—.
n! X
This leads to

(8T<I>)q = _gpj(vjq)@ - qu)tip)

10

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.40)
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2.2 Conformally balanced manifolds

In this section, we study the geometry of conformally balanced Calabi-Yau manifolds. Let X be a
complex manifold of dimension m equipped with a nowhere vanishing holomorphic (m,0) form €.
Stated differently, X is a complex manifold with trivial canonical bundle, and we will take this to
be our definition of a Calabi-Yau manifold. Given a Hermitian metric w, we may take the norm of
Q by

n(n—1)

)2 £ = (-1 A, (2.41)

In a local trivialization, where €2 is now treated as a section of a line bundle rather than an (m,0)

form, we have

212 = Qf(det g5,) . (2.42)

We say that w is conformally balanced if
d(]|Q,w™ 1) = 0. (2.43)
This allows us to define a cohomology class
[1Qww™ ] € H* 11X, R). (2.44)

We will call this the conformally balanced class of w.

The conformally balanced condition originates from theoretical physics. It is sometimes called
the dilatino equation, and was originally proposed as an equation of the form d'w = i(0—9) log |||,
by C. Hull and A. Strominger [67, 68, 100] in heterotic string theory with non-zero fluxes. It was
shown by Li-Yau [74] that this equation is equivalent to (2.43). We will discuss various characteri-
zations of the conformally balanced equation in this section, which is contained in joint work with

D.H. Phong and X.-W. Zhang [84].

2.2.1 The (n — 1)-th root of an (n —1,n — 1)-form

Since study of conformally balanced metrics involves the quantity ||Q|,w™ !, it is natural to ask

whether any positive (n — 1,n — 1) form ¥ can be written as

W = (|, (2.45)

11
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for some Hermitian metric w. Michelsohn [78] has given a positive answer to this question, and in
this subsection we will discuss taking the (n — 1)-root of a (n — 1,n — 1) form.

Let @ be a (n — 1,n — 1)-form which is positive definite, in the sense that
PAINAT

is a positive (n,n)-form for any non-zero (1,0)-form n and which equals 0 if and only if n = 0.

Michelsohn [78] has shown that there exists a unique positive (1,1)-form w with
Wl = . (2.46)
A formula for w can be obtained as follows. Let ® be expressed as in [78] by

o = 1)1 (sgn(k, ) ®dz Adz A AdE AdEE A - (2.47)
k,j

AdZINdZI N - ANd2™ A dZ"

where sgn(k,j) = —1if k > j and sgn(k,j) = 1 otherwise. We note that this is different from our
convention on components of an (n — 1,n — 1) form, and one advantage for this representation is

that ®7 is a Hermitian matrix. Then the (n — 1)-th root w = ig;kdzk A dZ of ® is given by

g, = (det g) (27, (2.48)

where (®71)5; is the inverse matrix of M e, @ki(fb*l)ﬂ = 6*,. From this formula, we see that

det w" ! = (detw)" 1.

Recall that |2 = QQ(det g)~!. If ¥ is any positive (n — 1,n — 1)-form, we claim that there

is a unique positive (1,1)-form w so that ¥ = ||Q||,w™ .

Indeed, this equation determines the norm [|€2||,,, since taking determinants gives

00 n/2
U — nfli i
det <det g> (det g) (2.49)
We may thus solve and obtain
1 det ¥ V(2
The (n — 1)-th root formula (2.48) gives
gir = (det 9)|Qlw (¥, = (det g)!/2(QQ) /2 (W13, (2.51)

12
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Therefore

det ¥\ /("2 1
gip = ( o ) v, (2.52)

It follows that w = z‘g,;jdzj A dz* solves ¥ = [|Q|,w™ 1.

2.2.2 Torsion constraints

We prove that the conformally balanced condition is equivalent to a constraint on the torsion of

the metric, as observed by Li and Yau [74].

Proposition 1. Let (X,w) be a m dimensional Hermitian manifold equipped with a nowhere van-
ishing holomorphic (m,0)-form Q. Then the following conditions are equivalent:

(i) The metric w satisfies the conformally balanced condition d(||Q|,w™ ') = 0;
(i) diw = i(0 — 9) log [|2]|;
(i) T, = 0y log |2, Ty = log 2.

Proof. The conformally balanced condition can be written as
d1og | Aw™ 4+ (m — 1)0w Aw™ 2 = 0. (2.53)

We compute the term dw Aw™ 2. Fix a point and choose coordinates such that w = 6l dzF ndZF,
and denote e; = idz? A dz’. Then
dwAw'™? = 09y dz" Nidz? NdZE A (er + - +e,)™ 2
= (m—2)10ug; dz" Nidzd NdZF A (ex A AEp A NEg A Aey)
= (m—2)!(28pg,;k —Z@kg,;p)dzp/\ (1 A~ NépN---Nep)
k k

= —(m—=2)!TpdzP N(e1 A---Nép A+ Nep). (2.54)

Hence we have proved the identity

n—1
Ow AW 2 = —T,deP A —— 2.55
wAw pdF A oy (2:55)
Using the previous equation gives
(9log |2 — TpdzP) Aw™ = 0. (2.56)

13
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This implies dlog |||, — TpdzP = 0 and proves the equivalence between (i) and (iii). For (ii), we

use (2.38) and (2.40) to obtain expressions for the adjoints of & and 9.
(gTq’)q = gkﬁ(vk(bﬁq =Tk ‘I’ﬁq)7 (8‘@)5 - —gpj(vj‘bqp - Tj‘pqp)- (2-57)
If we let ® = w and @5, = igpy, we obtain
(0'w)y = —iT,,  (9lw)g = iTy. (2.58)

This implies the equivalence between (ii) and (iii). Q.E.D.

2.2.3 Curvature identities

Though the curvature tensor of a Kahler metric has several symmetry properties, the curvature of
an arbitrary Hermitian metric has little structure. We will see in this section that the conformally
balanced condition implies several identities for the curvature tensor of the Chern connection.
Furthermore, if we use the Bismut connection instead, we will see that the Bismut-Ricci tensor
vanishes identically for conformally balanced metrics.

In Hermitian geometry there are four different notions of Ricci curvature, and we will use the

following notation
Rp; = Ry, Rp; = RPyps, R, = RiPpj, R, = R jp. (2.59)
The tensor
Ryj = —0;0 logw™ = 0;0 log |23, (2.60)

is sometimes called the Chern-Ricci curvature. Corresponding to these 4 notions of Ricci curvature

are 4 notions of scalar curvature
.]_C ~ .]_C ~ .E .E
R=g¢"Ry;, R=¢"R;;, R =¢ R;—fj, R'=¢ jo. (2.61)

We note that R = R and R’ = R” for any Hermitian metric. The curvature of a conformally

balanced metric satisfies several useful identities, which we summarize in the following proposition.

Proposition 2. Assume that w is a conformally balanced metric on an m-fold X. Then
(i) VEI; = VT = 5By
(it) Ry, = Ry, = 3R;-

14
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(ifl) Ry = 3R + V" T
(ivyR=Rand R =R" = LR.

Proof. By definition, Ry; = —0;0;logw™ = 9;0;log [|Q]|2, so (i) follows from (iii) in Lemma 1.
Next, by the Bianchi identity, we have

Ry, = Ry’ = Ry + VT jm = Ry — ViT) = %R;;j, (2.62)
and
1 —a 1
Ry, = Ry + VT = Ry, (2.63)
This establishes (ii). Next, we compute
Rp; = Ry + VTP 15+ VTimg™ = %R,;j + V" T s (2.64)

which proves (iii). Contracting these identities with gk proves (iv). Q.E.D.

Though for most applications we will only be using the Chern connection of w, the conformally
balanced condition has a nice interpretation in terms of its Bismut connection [119, 7, 49]. The

Bismut connection V? of an arbitrary Hermitian metric w is defined to act on vector fields W by
VIWP = VSWP — TPy Wk, VEWP = VEWP + ¢, T, W' (2.65)

Here, to avoid confusion, we use V¢ to denote the Chern connection. Therefore V2 = d+ A, where
A% =T%5 —T%pg, A%j5=g" Ty, (2.66)

Combining this explicit expression for the connection with (2.13) allows us to compute all com-
ponents of the curvature of the Bismut connection. For our purposes, we will only compute the

following Ricci curvature REB]. = REBjaO"

(RP)1; = 0;(T%a — T%a) — Ok(T%j0 — T%a), (2.67)
(RP)i5 = 05(9° Toiy) — O5(9° 7 T3, (2.68)
(RP)g; = 05(9° Tois) + (R9)g; % + 05T jar- (2.69)
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Simplifying and using the notation T}, we obtain

(RB)kj = 8ka - 816,TJ7 (RB)EE - afc i aj k> (270)
(RP)3; = —05Tj — 05T}, + 9,05 log | Q12 (2.71)
We define the Bismut-Ricci form of w as
1 . 1 ) )
RicB = §(R3)kj dz) N dzF + 5(RB),—CE dz’ N dz" + (RP)p,; d2? A dzP. (2.72)

Our reason for introducing the Bismut-Ricci form is the following characterization of conformally

balanced metrics, which is due to Fino and Grantcharov [34].

Proposition 3. Let (X,w) be a m dimensional Hermitian manifold equipped with a nowhere van-
ishing holomorphic (m,0)-form Q. Then the following conditions are equivalent:
(i) The metric w satisfies the conformally balanced condition d(|||,w™ ) = 0;

(ii) The Ricci curvature of the Bismut connection of RicB vanishes identically.

Proof: Let w = ig,;jdzj A dZ* be a Hermitian metric. Following [34], we let x = ||Q]|3J/(m_1)w.
The torsion TX of the Hermitian metric y is readily computed.
T = 12057 Vg (1201 Y gh) — 0m (1201 ™ Vg
= Ty — O log Q|- (2.73)

By part (ii) of Proposition 1, we know that (0Tx),, = —iTy and (0Tx)5 = i1, where O and 9f

are with respect to the metric xy. Then
(O"X)m = =i + 10 10g ||,  (0"X)m = iTm — 0 log || Q- (2.74)
By our computation of the Ricci curvature of the Bismut connection of w, (2.70), we have
dd'x = RicP. (2.75)

We see that by part (iii) of Proposition 1, if w is conformally balanced then d'y = 0 and hence
Ricf = 0. On the other hand, suppose Rz'cf = 0. Then

0= (dd'x, x) = (d'x, d'x), (2.76)
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hence dfy = 0, which implies T}, = 9y, log ||Q||. By part (iii) of Proposition 1, w is conformally
balanced. Q.E.D.

Lastly, we note that this condition can also be interpreted in terms of restricted holonomy. In-
deed, a Hermitian metric is conformally balanced if and only if its Bismut connection has holonomy
contained in SU(n). A discussion of holonomy and conformally balanced metrics can be found in
the survey of M. Garcia-Fernandez [44].

2.2.4 Relation to pluriclosed metrics

The conformally balanced condition is one of many conditions appearing in Hermitian geometry.

Another is the pluriclosed condition, which requires
i00w = 0. (2.77)

It was noticed by Ivanov-Papadopoulos [69] that a Hermitian metric satisfying both i90w = 0 and
d(||9]|ww™ 1) = 0 must be Kéhler. Indeed, we compute

_ 1 4
100w = 2 {a,;(ajggm — 8mggj) — 07(0595m — amggj)}dzé AdZ A dz™ A dzZF (2.78)
and hence
(100w)jzm = 04(0jGm — Omk;) — Ox(039m — Om9i;)- (2.79)

On the other hand, the Riemann curvature tensor is given by

Rii'm = =059 0i9pm) = —9P0;0;9pm + 9" 01975910 gam., (2.80)

or, equivalently,
Rijom = —0%0i95m + %9259 0jgrm.- (2.81)

Thus we obtain
(100W)gjm = BRijom — Bimi + Romig — Rijim + 9”7 Trmi Toiz- (2.82)

Applying Lemma 2 on the torsion and Ricci curvatures of conformally balanced metrics gives

gmf(iaéw),;j— = R,;j — gs’jgmeTfijka. (2.83)

m —
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Suppose i00w = 0. Then taking the trace again gives
R=T] (2.84)

By the definition of R, we have
g 050 log |22 = |, (2.85)

By the maximum principle, ||2]|,, is constant and |T'|*> = 0. It follows that w is Kiihler and Ricci-flat.
More generally, there is a conjecture in Hermitian geometry [35] which states that if X admits
a Hermitian metric w; which is pluriclosed and another (possibly different) metric we which is

conformally balanced, then X must be Kahler.

2.3 Examples

In this section, we exhibit various examples of conformally balanced Calabi-Yau manifolds. Since it
will turn out to be the most important case in future sections, we only consider manifolds of complex
dimension m = 3. This list is far from comprehensive, and we mainly focus on examples which will
be used again later in this thesis. In particular, we do not discuss the example of Fu-Li-Yau [38] of

connected sums of S x $3 or nilmanifolds and solvmanifolds [34, 32, 33, 115, 116, 82].

2.3.1 Kahler Calabi-Yau manifolds

First, we note that any Ké&hler manifold with trivial canonical bundle is conformally balanced.
Indeed, by Yau’s theorem [120], there exists a Ricci flat metric w = ig,;jdzj A dzF on X. Then for

any non-vanishing holomorphic (n,0) form 2, we have
i001og |2 = 100 1og(QQ) — i9d log det gr; = iRic, = 0. (2.86)
Since g7 Eaj Or log ||©2]|2 = 0, by the maximum principle we conclude that ||2]|,, is constant. Therefore
d([|9f|ww™ ™) =0 (2.87)

since dw = 0.
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2.3.2 Complex Lie groups

Let (X,w) be a complex Lie group of complex dimension three with left-invariant metric w. Let
e1,e2,e3 € g be an orthonormal frame of left-invariant holomorphic vector fields on X. The

structure constants of the Lie algebra g in this basis will be denoted
leas es] = apea. (2.88)
The structure constants satisfy the Jacobi identity
clipc i + iy 4+ cjrc i = 0. (2.89)

Let e',e?,e? be the dual frame of holomorphic 1-forms. By Cartan’s formula for the exterior

derivative,

1
de = §c“bd el neb (2.90)

This identity is known as the Maurer-Cartan equation. In the frame e',e?,e?, the left-invariant

metric w can be written as

w=1iy e Ae. (2.91)
a

Taking the exterior derivative of w and applying (2.90) gives
1
10w = —3 Z Al Net nel, (2.92)

Therefore

(10w) gy = —Cap- (2.93)

We take the Calabi-Yau form to be
Q=ene?ned. (2.94)

We see that |||, is a constant, and hence to verify that ||2[|,w? is closed it suffices to show that
dw? = 0. For this, we need to add an extra assumption on the complex Lie group X, namely that

it is unimodular. A Lie group whose structure constants satisfy
> Ppa=0 (2.95)
p

is said to be unimodular. It can be verified that this condition is independent of the choice of frame.
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Using (2.90), we compute
Ow? = Z 2c% e A el Aef Al A el (2.96)
a,b,c,d

By examining each of the three components of dw?, we find

ow? = —4(0113 + 0223)61 Nenedne A+ 4(0112 + 0332)61 ANeEnednel aed

—4(y + P3)et Al A NP el (2.97)

The computation of Ow? is similar, and we can see that dw? = 0 is equivalent to the condition
>p@Ppa=0.

Thus we see that unimodularity is equivalent to dw? = 0 for any left-invariant metric. This
statement is well-known and to our knowledge first appeared in [1].

Fei-Yau ([30], Proposition 3.7) classify complex unimodular Lie algebras of dimension 3 and
study the Hull-Strominger system in each case. There are 4 different types, corresponding to
whether the Lie algebra is abelian, nilpotent, solvable, or semisimple. We exhibit here a Lie group

in the semisimple case, namely SL(2,C), to give a concrete example.
SL(2,C) ={A € Matax2(C) : det A =1}. (2.98)

Consider the paths 7;(t) € SL(2,C) going through the identity matrix I at ¢t = 0.

1—t2 it 1{ 1t ¢ 1( 1—it it?
M (t) = ; 2(t) = B ; 13(t) = B
it 1 -t 1 it? 14it — =it
(2.99)
Differentiating these paths at ¢ = 0 gives the following tangent vectors at the identity.
10 1 1 0 1 1 —% O
o1 == , 09 = — , 03 = — (2.100)
2\ i o0 2\ -1 0 2\ 0
Similarly, we can get the following tangent vectors
1({0 1 1 ({0 —i 1({ -1 0
Yi1== , Yo = — , Y3 = — . (2.101)
2\ 1 0 2\i o0 2\ 0 1

The matrices {01, 09,03, X1, X2, X3} form a basis for the tangent space at the identity. They satisfy

the following commutation relations

[Ui,O'j] = €ijkOk, [Ui, Ej] = Eijkzk, [Ei,Ej] = —&ijk0k- (2.102)
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Here ;5 is the Levi-Civita symbol. We define an almost-complex structure J on SL(2,C) by

defining
J(og) =3k, J(Zk) = —oy. (2.103)

The space of (1,0) vector fields is spanned by

er = %(ak — i), (2.104)
We may compute
e e;] = %[ai S0y — i)
= SHlossos] —ilow, %] i[5, 03] — S5, %51}

1 .
= §{€ijk0’k — i€ijk Sk + Ejik Sk + EijkOk }

= &ijkCk- (2.105)

Therefore the almost-complex structure is integrable, and we may apply the Newlander-Nirenberg
theorem. Thus SL(2,C) is a complex Lie group with structure constants cijk = g;jk. Since
Ep P pa = 0, we see that SL(2,C) is unimodular. To obtain a compact threefold, we may quotient

out by a discrete group X = SL(2,C)/A.

2.3.3 Fei twistor spaces

The next construction is a hyperkahler fibration over a Riemann surface. This construction is due
to Fei [25, 26] and it generalizes previous constructions of Calabi [12] and Gray [57].

We start by considering T = R*/A with basis e1, €2, €3, e4. We define the complex structures

I(e1) = ea, I(e3) =eq, I* = —1, (2.106)
J(e1) = e3, J(es) = e, J* =—1 (2.107)
K(e1) =es, K(eg)=e3 K°=—1L (2.108)

This is a hyperkéhler structure, and IJ = K, I? = J?> = K? = —1. Let
_ 1 2 3 4 _
wr=e Ne“+e’ANe, wr(v,w) = g(lv,w), (2.109)

wy=e' A +etne? wi(v,w) = g(Jv,w), (2.110)
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wig =etnet e Aed, wi(v,w) = g(Kv,w). (2.111)

We have that
de:dWJ:dwK:O. (2.112)

The forms wy,wy,wg are all closed positive (1, 1) forms in their respective complex structure.

Next, we consider a Riemann surface ¥ and a holomorphic map ¢ : ¥ — P! such that ¢*O(2) =
Ky. We call (X, ¢) a vanishing spinorial pair. Vanishing spinorial pairs provide a square root of
the canonical bundle L = ¢*O(1), which is known as a theta characteristic in algebraic geometry.
Conversely, sections of a theta characteristic with no common zeroes can be used to construct a
map . Vanishing spinorial pairs exist for each genus g > 3, and they can be constructed by using
the Gauss map of a minimal surface in T [29]. Such minimal surfaces were constructed by Meeks
[77] and Traizet [112].

For ¢ € P!, we will use the following convention for the stereographic projection

1-|¢P ¢+¢ i(f—()) 2
o, P,7Y) = ) ) €S 2.113
(:7:) <1+|C|2 T+ 1P T+ P 2113
We will study X = ¥ x T* with the complex structure (js,Z),
I =a(p)l+ ()] +v(p)K. (2.114)
It can be shown that Z2 = —1 is an almost-complex structure, and in fact it is integrable so that

X is a complex manifold. The space X can be understood as a pullback twistor space [65]. It was
shown in [25, 26] that the condition ¢*O(2) = Ky implies that X has trivial canonical bundle.

Indeed, we define the following 3-form
Q=1 ANwr+ pe ANwy + us A wg, (2.115)
where p; is the pullback via ¢ of ¢;,
(011 02 : @3] = [22120 1 22 — 22« —i(22 + 22)] C P2 (2.116)

Let us write the ¢; explicitly as holomorphic vector fields on P1. Writing ¢ = 22/21 on Uy = {2 #

0}, we have the local expressions
p1=2C, p2=C*—1, p3=—i(1+¢). (2.117)
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Write € = 21 /29 on Uy = {22 # 0}, we have the local expressions

1= =26, 2= —1, p3 =i(1+&%).

Since g—g = —1/£? we have the transformation laws

vi(C) = gé%(f),

(2.118)

(2.119)

hence the ; are holomorphic vector fields on P'. The line bundle of holomorphic vector fields on

P! is isomorphic to O(2). Since p*O(2) = Ky, it follows that 1 = ©*p1, o = ©*@a, U3 = ©* 3

are holomorphic 1 forms on X.

Proposition 4. (Fei [26]) The form Q (2.115) is a non-vanishing holomorphic (3,0) form.

Proof: We compute in coordinates to determine the type of 2. On p*U;, we write

Q=2pdz Awr + (¢* = 1)dz Awy —i(1 + p?) dz A wk. (2.120)
For any z,v in the tangent space of the 7% fiber direction,
QO,, v,z +iTzx) = 2pg(Iv,x+iTlz)+ (¢* — Dg(Jv,z +iZz) —i(1 + > g(Kv, z + iTx)
= {2ipa+i(¢” = 1)+ (1+¢*)7}g(v,2)
H2p +i(¢” — 1)y — (1 +¢?)BYg(Iv, 2)
H(¥? = 1) = 2ivp + (1 + ¢*)atg(Jv, x)
+{2ip —ia(p? — 1) —i(1 + ©*)Yg(Kv,z). (2.121)
Substituting the definition of «, 3,7,
1— |of” P+ i@~ )
=7 = = T 2.122
T Tl 0 T+eP” 77 T+l (2122)
we obtain
{2ipa +i(¢” = 1)+ (1+¢*)7} =0, (2.123)
2+ i(¢? — 1)y — (14638} =0, (2.124)
{(¥* = 1) = 2ivp + (1 + ¢*)a} =0, (2.125)
{2iBp —ia(p? — 1) —i(1+ %)} = 0. (2.126)
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Therefore

Q(0,,v,x +1Zx) =0, (2.127)

for any v, x in the tangent space of T%. Therefore (3., -,-) is a (2,0) form on T* since it vanishes

upon receiving x + iZx € TO'T*. Recall that in general we always have
TN ={x —iTx:2 € TN}, TN ={zx+iZz:x € TN} (2.128)
It follows that Q is a (3,0) form on X since it will vanish if given any vector in T%!X.

Next, we need 9 = 0 for € to be a holomorphic (3,0) form. Since wr,ws, wx are closed, and

1; is a holomorphic 1-form on a manifold of complex dimension 1 hence is also closed,
dQ = 0. (2.129)

Therefore 92 = 0. We will compute QAQ in the next section and show that it is nowhere vanishing.

Hence Q is a holomorphic non-vanishing (3,0) form. Q.E.D.
Next, we will construct a family of conformally balanced metrics on X. Define

@ =1 pp A ik (2.130)

We claim @ is a metric on . Indeed, let z be a local coordinate such that ¢*0; = dz. By definition

of uk, locally on ¢*U; we have,

O = (@ +e? =12+ 1+ @?P)idz A dz

= 2(1+ |p*)?idz A dz. (2.131)

A similar computation holds on ¢*Us.

Next, for a given value of ¢ = (a, 3,7), define the following 2-form on 7%
W = awy + Bwy + ywi. (2.132)
We note that w’ is positive and type (1,1) on (T%,T) since

W'(z,y) = ag(lz,y) + Bg(Jz,y) +v9(Kz,y) = g(Zz,y). (2.133)
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Proposition 5. (Fei [26]) X is a conformally balanced Calabi-Yau threefold. In fact, for any

f Y% —= R, the metric

wp = o+ el
is conformally balanced.

Proof: We will use the following relations

wrANwj=wr \N\wg =wjANwg =0, w%:w?]:w%(:%ol]v.

First, we compute
w? = (a® + B% + ¥*)wi = 2voly,

which implies

w? =3O Aw? =6eT @A voly.
By definition
W
Qn= ol o,
and we may compute

IQAQ = i(py A fin + po A iz + p3 A fiz) A wr = 20 A voly.

Therefore

192, = (V2)~te

and

||QwaUJ]20 = (V2) e 2e¥ O AW 4+ eHW?) = (V2)TH2ef 0 AW+ W'P).

It follows that

120, wF = (V2)7H (27 & A (awr + Bwy + ywic) + w?).

(2.134)

(2.135)

(2.136)

(2.137)

(2.138)

(2.139)

(2.140)

(2.141)

(2.142)

Since ef® is a 2-form on a manifold of dimension 2 and w% is a 4-form on a manifold of dimension

4, we have

d([|Q|,w}) = 0.

Q.E.D.

Lastly, we will show that X does not admit a Kéhler metric. In fact,
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Proposition 6. (Fei [26]) There is no Hermitian metric w on X such that i00w = 0.
Proof: We will compute the following exterior derivatives of the form «w’ on X:
ow', O, 00w (2.144)
These quantities, as well as generalizations, are computed in [20]. First, write
dw' = 0a ANwr +0B ANwy+ 0y Awg + 0a Awr + 0B Awy + 0y A wk. (2.145)

Since w’ is (1,1), then dw’ has a (2,1) and (1,2) part. We have to identify this decomposition. If

nis a (2,1) form, then

(In)(z,y, 2) = n(Tx,Ty,Iz) = i2(—i)n(z,y, 2). (2.146)
If n is a (1,2) form, then

(Zn)(@,y, 2) := n(Tx, Ty, Iz) = i(—i)*n(z,y, 2). (2.147)

So we can detect the decomposition of dw’ by acting with the complex structure. We compute Z

acting on wy, wy, wg. For example, a computation gives
wi(Zz,Ty) = g (alx+ pJx+~yKz),aly + BJy +vKy)

= g(—ax+ Kz —~yJz,aly + pJy + vKy)

= (a? =B =P wi(z,y) + 20wy (2, y) + 200wk (2,y)

= (20 — Dwi(z,y) + 208w (z,y) + 207wk (2, 7). (2.148)

Similarly
(,JJJ(II',Iy) = (262 - 1)WJ($7 y) + 2ﬁOéOJ[(ZL', y) + 257(.&1[((%’, y)? (2149)
wi (Tr, Ty) = (29° — Dwk (2,y) + 2yawr(2,y) + 2yBw, (2, y). (2.150)
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Using these formulas

T(da Awr + 0B Awy + 0y Awk)
= —ida A ((20% = Dwr + 208wy + 207wk )
—i0B A (267 — 1wy + 2Bawr + 2B wk)
—i0y A ((27° = Dwk + 2yawr + 2vBwy)
= i(0aANwr+ 0B Awy+ 0y Awk)
—2ia(ada + IS + yOy)wr
—2if(ada + BOS + 0wy

—2iy(ada + BOS + y0Y)wk .
Differentiating o + 2 + % = 1 gives
adza + BOz8 + v0zy = 0.

Therefore

Z(0a Awr + 0B Awy + 0y Awk) = i(da Awr + OB Awy + 0y Awk),
which identifies the type as (2,1). A similar computation identifies
0w =0 ANwr+ 0B Awy+ 0y Awk.
We may now compute i00w’ by taking the exterior derivative
100w = idOw’ = i00a A wr + i00B A wy + 100y A wi.

It can be verified directly that «, 8, v satisfy the PDE

Vel

gzzazaiv + B

v=20,

(2.151)

(2.152)

(2.153)

(2.154)

(2.155)

(2.156)

where ||V]||? is taken using @ on ¥ and wpg the Fubini-Study metric on P!. Substituting this

relation into 100w’ gives

_ Vol?
00w = | ;0H WA (awr + pwy + Ywi)
\V4 2
_ ;H oA

27

(2.157)



CHAPTER 2. CONFORMALLY BALANCED CALABI-YAU MANIFOLDS

With this identity, we can rule out the existence of Hermitian metrics w satisfying i00w = 0.

Indeed, for any positive form w we have
= 1
/ 100w N w = / IVe|l?@ AW Aw > 0. (2.158)
X 2 Jx

Integrating by parts shows that it is impossible to have i90w = 0. Q.E.D.

2.3.4 Goldstein-Prokushkin fibrations

The next construction will give us a threefold X which is a T2 torus fibration over a compact Kéhler
Calabi-Yau surface. This construction is due to Goldstein-Prokushkin [55], building on earlier ideas
of Calabi-Eckmann [13]. In this section, we will follow the presentation of Fu-Yau [43], who solved
the Hull-Strominger system on these manifolds.

Let (S,w,g) be a compact Kahler surface with nowhere vanishing holomorphic (2,0) form Qg

and Kihler-Ricci flat metric @. Let wy,ws € 2rH2(S,Z) be anti-self-dual (1,1) forms, so that
wi Aw=wy A =0. (2.159)

We will use line bundles L1 — S, Ly — S with curvature forms wy, wo to make circle bundles which
will form the T2 fibers of our manifold X, and use the connection 1-forms of L, Ly to construct a
(1,0) form 0 on X satisfying

90 =0, 90 = wy + iws. (2.160)

We will see that = Qg A6 is a non-vanishing holomorphic (3,0) form on X and wg = & +i0 A0 is
a conformally balanced Hermitian metric. Furthermore, X is non-Ké&hler if wq,ws are non-trivial.

We now go through the details of the construction. Since w; and we are in 2w H?(S,Z), there
exists holomorphic line bundles L, Ly — S equipped with connections a1, a2 such that F,, = iw;

and Fj, = iws. It will be convenient to work with the local forms A; = —ia; and As = —iay. Then
dA1 = Wi, dAQ = W2. (2.161)

Let S = |JUy be a cover of S trivializing L;. This equips us with transition functions t,, on
U, N U, satisfying the cocycle condition (2.2) and local connection forms A, on U, satisfying
the transformation law (2.5). On each trivialization U, we define the S! fiber by introducing a

coordinate e™» satisfying the relation on U wNU,

e =t,,e", (2.162)
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The same construction using Lo gives another S fiber with local coordinate e¥». Using the local
coordinates (2,)1, (24)2, T, Y on Uy, we form a six dimensional manifold X which is a T fibration
over S.

We assume the transition functions of Ly are in U(1) and write t,, = e'™. Then the local
coordinates x,, satisfy

x, = Ty + Ty + 27k, (2.163)

for some integer k € Z on U, NU,. The transformation law (2.5) is simplified in our case to
(A1) = (A1)y — d7p. (2.164)

It follows that
dxu + (Al)u =dz, + (Al)l,, (2.165)

and hence dz + A; is a well-defined 1-form on X. Similarly, dy + Az is also a well-defined 1-form
on X. We define
0 =dx+ Ay +i(dy + Aa). (2.166)

By (2.161), we have
df = w1 + iws. (2167)

We must now equip X with a complex structure. Let U, be an open set in S with complex

coordinates z¥ = u* + iv* with k = 1,2. Then we have a corresponding open set in X with local

coordinates w = (u', u?, vt v?, %y, Yu). First, we note that on X we have two global vertical vector

fields
0 0

ox’ Ay’

Though a%k and a%k are local vector fields on S, to obtain local vector fields on X we must take

(2.168)

1 ~2 ~1

their horizontal lifts. It can be checked by changing coordinates w to @ = (u!, @2, 9!, 92, z,,v,) and

using (2.164) and (2.163) that the following expressions transform correctly to define local vector

fields on X
0 0 0 0 0

0 9\ 0 0o\ 0
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We let H = span{ X, X2,Y1,Y2} be the horizontal subspace of TX. Indeed, by noting that H =
ker @, we see that H is well-defined and TX = span{%, C%} @ H. The horizontal subspace H
is isomorphic to T'S and we may identify % with X} and % with Yi. Therefore the complex
structure jg on S gives rise to a linear map Jy on H such that J%I = —1. We let I be the usual
almost complex structure on span{a%, 8%}. Then J = I & Jy defines an almost complex structure

on X. Concretely, we have

0 0 0 0

9= oy oy = g Xk =Ye Me=—Xi (2.171)
The space TM%(X) is spanned by
Uo = % <§x - iaay> U= %(Xk — V). (2.172)
The space T%!(X) is spanned by
wo=2 i W= x.+iv.. (2.173)
Ox oy

We note that 6 (2.166) is of type (1,0) since O(W;) = 0. Also, since Qg is a (2,0) form on S it
remains a (2,0) form on X. Therefore

Q=Qg A6, (2.174)

is a (3,0) form. By (2.167)
) = Qg A df = Qg A (w; + iws) = 0. (2.175)

The last equality vanishes because it is a 5-form on S.
We show that I is integrable by showing that for any (1,0) form 53, then df has no (0,2) part.
Indeed, since B A 2 =0 and 2 is closed, then

dB A Q =0, (2.176)

which implies df has no (0, 2) part. Thus I is integrable, and by the Newlander-Nirenberg theorem,

X is a complex manifold.

To summarize, the complex manifold X admits a (1,0) form 6 satisfying
90 =0, 90 = wy + iwy, (2.177)

and furthermore, 2 = Qg A 6 is a non-vanishing holomorphic (3, 0) form.
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Proposition 7. (/55],[43]) Let u be a smooth function on S. Consider the family of (1,1) forms

wy = e+ i NG, (2.178)

Then wy s a conformally balanced Hermitian metric on X.

Proof: Recall that © = ig,;jdzj A dz* is a Kahler metric on S. We compute

0(Uo) =1, 0(U1) =06(Us2) =0 (2.179)
_ 1 0
wu(Ug, Uj) = : (2.180)
0 e“g,;:j

hence w, is a Hermitian metric. By definition,

_ 9 w3 B 2@2
QAR = 002,58, Q5 A Qs = 195135, (2.181)
and so
IQAQ=1iQs A Qs AOAO =2||Qg]|2 % Ai A 6. (2.182)
On the other hand,
w2 = 2% 4 2e%0 Nif A 6, (2.183)
wd = 3e2"W? Nif A 6. (2.184)

Therefore [|Q||2, = 4[Qsg||2e 2. Since & is Ricci-flat Kéhler, it follows that [|[Qg[|2 is constant.
We may normalize Qg such that

190, = " (2.185)

It follows that
19|, w2 = e“@? + 20 A if A 6. (2.186)

Taking the exterior derivative, the first term vanishes as it is a top form on S. For the second term,

we compute

A(|Qw,w?) = 20 AidO NG — 20 Nif A dO
= 20 Ni(wy +iwa) A O — 20 N i A (wy — iwo)

= 0, (2.187)
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since wy and wo are anti-self-dual (2.159).

Remark: X is non-Ké&hler unless wy and ws are trivial. Indeed, if there existed a metric a such

that i00a = 0, then
= 1
0= / 100wy N\ a = / (w2 + lwz]l2) &* A a, (2.188)
X 4 Jx

which is a contradiction unless [|w1]|? + |lwz||? = 0. Here we used that w; and ws are anti-self-dual,

hence
100wy = —00 A 00 = —(wy + iwg) (w1 — iws) = —(w? + wi), (2.189)
and
2 p
Wi = —wj A*wj = —||w]\|w7 (2.190)
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Chapter 3

Hull-Strominger System

3.1 Motivation

One of the first breakthroughs in the study of nonlinear partial differential equations in geome-
try was Yau’s solution [120] to the Calabi conjecture. The existence of Kéhler Ricci-flat metrics
on Calabi-Yau manifolds has since resonated through mathematics. Furthermore, less than a
decade later, these metrics emerged in work by Candelas-Horowitz-Strominger-Witten in theoreti-
cal physics [14] as configurations of heterotic string theory, bringing together the fields of theoretical
physics and canonical metrics in complex geometry.

In 1986, Hull [67, 68] and Strominger [100] considered configurations of heterotic string theory
with torsion, and proposed a system of equations generalizing the ansatz of Candelas-Horowitz-
Strominger-Witten. Given a complex manifold X of dimension three with nonzero holomorphic
(3,0) form €, and a holomorphic vector bundle £ — X, the Hull-Strominger system seeks a pair

of metrics (E, H) — (X, w) solving

Fy Aw? =0, (3.1)
100w = Z/ (Tr Rm(w) A Rm(w) — Tr Fy A Fg), (3.2)
4|9 w?) = 0. (33)

Here Rm(w), Fiy are the endomorphism-valued curvature forms associated to the Chern connection

of w, H (see §2.1 for conventions), and o’ € R is a given constant.
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The first equation and third equations have appeared before in complex geometry; the first equa-
tion (3.1) is the Hermitian-Yang-Mills equation, and the third equation (3.3) is, up to a conformal
factor, the balanced condition from Hermitian geometry [78]. Conformally balanced Hermitian
metrics, though generally non-Kahler, still retain many nice structural properties compared to
arbitrary Hermitian metrics (see Chapter 2). The second equation (3.2) is called the anomaly
cancellation equation, and though it is well-known to physicists as the Green-Schwarz cancellation
mechanism [58] in string theory, we are currently lacking in the analytic tools needed to study
its solutions. As a partial differential equation, equation (3.2) is particularly interesting as it is
quadratic in the Riemann curvature tensor, and is thus fully-nonlinear in second derivatives of the

metric tensor.

Threefolds equipped with a K&ahler Ricci-flat metric w solve the Hull-Strominger system if we
take the gauge bundle F to be the holomorphic tangent bundle with Fy = Rm(w). Indeed, in
this case (3.1) is the Ricci-flat condition, and (3.2) is trivial. The conformally balanced condition
(3.2) also holds, as was discussed in §2.3.1. Thus the Hull-Strominger system is a unification of the

Calabi-Yau equation and the Hermitian-Yang-Mills equation.

The Hull-Strominger system is still interesting if we take E to be trivial and Fg = 0, in which
case the system reduces to
100w = Z,Tr Rm(w) A Rm(w),  d(]|Q]|ww?) =0, (3.4)
which is a quadratic curvature equation on (2, 2) forms coupled to a conformally balanced condition.
In analogy with the Kéhler-Einstein equation, we see that the Hull-Strominger system is interesting
from the point of view of canonical metrics in non-Kéahler complex geometry. There has been much
activity concerning metrics in non-Kéhler complex geometry recently, see e.g. [47, 48, 76, 103,
109, 107, 110, 98, 4, 40, 41] and references therein. Part of the motivation for studying non-
Kéhler Calabi-Yau threefolds comes from Reid’s fantasy [95], which conjectures that all Calabi-
Yau threefolds can be connected by conifold transitions, as long as one allows the passage through

non-Kahler threefolds.

There are by now several examples of solutions to the Hull-Strominger system on compact
non-Kéhler threefolds; there is the Fu-Yau solution described in §3.3, parallelizable examples (see

[32, 56, 31, 30] and references therein), and in the following section, we will describe a new class of
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examples in joint work with T. Fei and Z. Huang [29]. There are also solutions on compact Kéhler

manifolds [3, 2, 74, 79] and local models [39, 24, 31, 62].

On a general balanced threefold with trivial canonical bundle, it is currently not known under
which condition a solution to the Hull-Strominger system will exist. By the Donaldson-Uhlenbeck-
Yau theorem [22, 117], the holomorphic vector bundle E should have degree zero and be stable with
respect to w. There is also the topological condition cho(X) = cho(E). Given these conditions, it is
a conjecture of Yau [121, 44| that solutions to the Hull-Strominger system exist. It is also possible
that another notion of stability may be needed, as is the case for constant scalar curvature Kahler

metrics (see [92] for a survey on stability and canonical metrics in Kéhler geometry).

In summary, our motivation for studying the Hull-Strominger system comes from three sources.
The first is its origins in theoretical physics as a proposed theory of quantum gravity. From the
point of view of analysis and the mathematical study of partial differential equations, this system
is of interest as a fully nonlinear system which is quadratic in the Riemannian curvature tensor.
Lastly, we view the Hull-Strominger system as a promising candidate for finding canonical metrics

on compact complex threefolds with trivial canonical bundle.

3.2 Fibrations over a Riemann surface

In algebraic geometry, it is conjectured that there are only finitely many topological types of
Kahler Calabi-Yau threefolds. A similar conjecture was made by physicists for solutions to the
Hull-Strominger system. In joint work with T. Fei and Z. Huang, we gave a negative answer to

this conjecture.

Theorem 5. (Fei-Huang-Picard [29]) Let ¥ be a compact Riemann surface of genus g > 3 with
a basepoint-free theta characteristic. Let M be a compact hyperkdhler 4-manifold. The generalized
Calabi-Gray construction gives rise to a compact non-Kahler Calabi-Yau 3-fold X, which is the
total space of a fibration p : X — X with fiber M, admitting explicit smooth solutions to the Hull-
Strominger system with gauge bundle E = Qx/x, taken to be the relative cotangent bundle of the

fibration. If M = T*, we may also take E to be any flat vector bundle.

Since such examples admit any genus g > 3, this class of examples contains manifolds of

infinitely many different topological types.
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For simplicity, we will only treat the case when M = T, in which case we will simply take the
gauge bundle E to be trivial with Fiy = 0. A theta characteristic D on X is a line bundle such that
D? = Ky. Given a basepoint free theta characteristic D, we may choose s1,s2 € H(X, D) such
that s; and sy do not both vanish at any point. Then { = s1/s2 is a meromorphic function which
defines a holomorphic map ¢ : ¥ — P! such that ¢*O(2) = K.

Given a such pair (3, ¢), in §2.3.3 of Chapter 2 we constructed a metric @ = > iy A i on X
using pullback sections py of O(2). Using local coordinates z on ¥ with ¢*0( = dz and ¢ = 29/2
on P!, we have

@ =2(1+ ¢p)?idz A dz. (3.5)

As usual, we will use the notation @ = igz,dz A dZ. The Gauss curvature x of @ can be worked out

to be
. N Vol? .
=@ wWrs = Ivel” ;pH w. (3.6)
Therefore

IVel* = =25, (3.7)

hence @ has non-positive Gauss curvature.
Next, on T* we define w’ = awy + Bwy +ywk, where ¢ = (o, 3,7) in stereographic coordinates,
and wy, wy, wg are the Kahler metrics associated to the hyperkéhler structure I,J,K. Explicitly,

using the coordinate ¢ on P! to express ¢, we have

_lolel s ete _ile-9) (3.8)
L+ |p?’ L+ |p?’ 1+ |e|?

The construction of the threefold p : X — ¥ with fiber 7% was given in §2.3.3 of Chapter 2. For

any f € C(X,R), we recall the ansatz metric

wp =X+ el (3.9)
on the threefold X, which has the property that

d(|Q]w;w}) = 0. (3.10)

To solve the Hull-Strominger system, we will substitute the ansatz metric wy into the anomaly
cancellation equation (3.2). The surprising fact is that the equation reduces to a single scalar PDE

on the Riemann surface ¥ for the function f in this case.
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The calculation of the curvature of wy was done by T. Fei in [24]. The result is

_ g (IVel®
Tr (Rm(wy) A Rm(wy)) = 100 '), (3.11)
e
where ||[V|? = —2k. Therefore the anomaly cancelation equation (3.2) with Fiy = 0 becomes

= o'k
idd { <ef + 26f> w’} = 0. (3.12)

Let
/
=el 4= 3.13
u=-el + 5ef " (3.13)
The equation can be rewritten as
i00(uw') = i00u A W' + i0u A 0w’ — idu A 0w’ + u - 100w’ = 0. (3.14)

The decomposition of dw’ into its (2,1) and (1,2) parts can be seen by acting with the complex
structure Jy. This computation was carried out in (2.155) of Chapter 2. The result is
0w’ = 0o Awr + 0B Awy + 0y A wrk,
0w = 0a Awr + 0B Awy + 0y A wk,
100w = —i00a A wr — 100 A wy —i00y A wi .
Next, it can be verified directly that «, 8,y all satisfy the PDE
i00v — Kv® = 0. (3.15)
Therefore
100w = —KkQ AW (3.16)

The anomaly cancellation equation (3.2) thus descends to the base of the fibration and has reduced
to the following scalar equation

G uz, — ku = 0. (3.17)

Therefore, after substituting the ansatz (3.9) with trivial gauge bundle into the Hull-Strominger

system, we are left with

2¢/ (3.18)
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To solve this system, we must find a function u in the kernel of §°?0,0; — x which is positive at all
ramification points of p. We note that there are no solutions under this ansatz with o/ < 0.

As we remarked previously, the functions o, 3 and v are in the kernel of §°?0,0; — k. We will try
to use these functions to obtain a solution. However, it may not be true that a combination of these
functions is positive at all ramification points of ¢. This condition is equivalent to all branched
points of ¢ on P! lying in an open hemisphere, and we call this the “hemisphere condition”.

To make sure the hemisphere condition holds, we may compose ¢ with an automorphism of P*.
Indeed, we can use a Mobius transformation such as ( + B for B > 1 to push all branched points to
the upper hemisphere. After this composition, we obtain a new pair (3, ) where the hemisphere

condition holds, and we may thus use the functions «, 3, v to solve the Hull-Strominger system.

3.3 Fibrations over a Calabi-Yau surface

In this section, we describe the solutions to the Hull-Strominger system obtained by Fu and Yau
[42, 43] in 2008. These were the first solutions obtained on non-Ké&hler manifolds, and they still
remain the most interesting from the point of view of fully nonlinear PDE.

Let 7 : Y — X be a Goldstein-Prokushkin fibration, as described in Chapter 2, constructed from
a Calabi-Yau surface (X,®, Q) equipped with two anti-self-dual (1, 1)-forms wy,ws € 2rH?(X,Z).
Let Ex — X be a stable holomorphic vector bundle over X with slope fX c1(Ex) AN@ = 0. Then
by the Donaldson-Uhlenbeck-Yau [22, 117] theorem, Ex admits a metric Hx with respect to @
satisfying the Hermitian-Yang-Mills equation Fg, Aw = 0.

Recall that, as discussed in Chapter 2, X admits a (1,0) form 6 such that the Fu-Yau ansatz

wy = €O +i0 A O (3.19)

is a conformally balanced metric for any scalar function u € C*°(X,R) (Proposition 7).

We will take £ = 7*(Ex) — Y as our gauge bundle, with metric H = n*(Hx). Direct

computation gives
WENFg =Fg, A0 A (2O + 20 A 0) = 0. (3.20)

Therefore H is Hermitian-Yang-Mills with respect to any metric wy,.
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The strategy is to substitute the ansatz (H,w,) into the Hull-Strominger system and hope
that the system reduces to a single equation for the potential function u. Since the Hermitian-
Yang-Mills equation (3.1) and the conformally balanced condition (3.3) are already satisfied by the

Fu-Yau ansatz metric (H,w,), it remains to study the anomaly cancellation equation (3.2). First,

we compute using (2.189)

100w, = 100(e"w) — (Wi + w3). (3.21)

In [43], Fu and Yau computed the curvature of the metric w,,. Fixing a point p € Y, they constructed

a frame of holomorphic vector fields such that at p,

, Rm = , (3.22)

e“g 0 Ri1 Ri2
1 Ro1 Roo

where the entries Rji are given by

Ri1 = Rm(Q) —00ul +e “OBAIB*§™!
Ry = —VOB +0uN 0B
Ry = (e “0B*§7")

Ry = 6_u(aB*g_1)/\53.

Here B = (¢1,92)T is a column vector of locally defined functions ¢; on X, where ¢; is constructed
from wi,ws, and OB is globally defined on X. Using this expression, Fu and Yau computed
(Proposition 8 in [43])

Tr(Rm(wy) A Rm(wy)) = Tr(Rm(&) A Rm(®)) + 200u A 00u + 09(e ™ “p). (3.27)
Here p is a real (1,1)-form on X depending on the data (&, w1, ws). Explicitly,
p= —% Te(OB A OB* §7). (3.28)

Putting everything together, we see that the Green-Schwarz anomaly cancellation equation (3.2)

descends to a single scalar equation on the base manifold X. The equation is

/
0 = 99(e% — ale™p) — %(aéu) A (09u) + p i (3.29)
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where

/ /
pi? = —(w? +wd) - %Tr(Rm(d)) A Rm(@)) + %Tr(FHX A Fu). (3.30)
The equation (3.29) is the Fu-Yau equation. By integrating both sides, we see that a necessary

condition for the existence of solutions is

/ e =0. (3.31)
X

This topological condition admits plenty of examples; indeed, fibrations = : ¥ — X and vector
bundles Ex — X satisfying [ i = 0 are exhibited in [42, 43]. We now come to the main
theorem of Fu and Yau which establishes the existence of solutions to the Hull-Strominger system

on Goldstein-Prokushkin fibrations.

Theorem 6. (Fu-Yau [42, 43]) Let o/ € R, p € QVYH(X,R), and pu: X — R be a smooth function

such that [ p@? =0. Then equation (3.29) admits smooth solutions.

There are by now several alternate proofs of this theorem using various PDE techniques [85,
86, 88, 83, 90, 17]. In Chapter 4, we will give proof of this theorem from [90], which is joint work
with D.H. Phong and X.-W Zhang. In fact, we will consider a generalization of (3.29) to higher
dimensions. More precisely, let (X, @) be a compact Kihler manifold of dimension n, p € QU1(X | R),
i: X — R, and o/ € R. For each fixed integer k, 1 < k < n — 1 and each real number v > 0, we

consider the equation
i00 {ek“d) — a’e(k’_w“p} A2 4+ o/ (100u) A QMR ot = 0. (3.32)

When k£ = 1 and v = 2, this equation was proposed by Fu and Yau [43] with applications to a
version of the Hull-Strominger system in higher dimensions. Solutions with o/ < 0, k =1, v = 2
were obtained in [88], and solutions for k = 1, v = 2 and arbitrary slope parameter o were obtained
independently in [90] and [17]. We shall refer to (3.32) as Fu-Yau Hessian equations. Our main

result is then the following:

Theorem 7. (Phong-Picard-Zhang [90]) Let o/ € R, p € QY'Y (X, R), and p: X — R be a smooth
function such that qudJ" = 0. There exists My > 1 depending on (X,0), &', n, k, v, p and p,
such that for each M > My, there exists a smooth function u with normalization fX etw" =M

solving the Fu-Yau Hessian equation (3.32).
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Uniqueness holds within a certain class of functions u € Ty, and this will be discussed in detail

in Chapter 4.

Let us interpret this result on a threefold 7 : Y — X over a Calabi-Yau surface (X,w) with Fu-
Yau ansatz w,. The normalization condition on f x e @&? can be interpreted as a parametrization

of the conformally balanced class of w,,. Indeed, from (2.186) we see that

(19w, w?] = [€“@?] + 2[@ A0 A 6]. (3.33)

Since [e%@?] is a top cohomology class on X, it is determined by its integral. Therefore S X eto? =M

parametrizes the conformally balanced class of w,,. We may thus prescribe a conformally balanced
class for our solution to the Hull-Strominger system by choosing a normalization M.

By Theorem 8 discussed in Chapter 4, uniqueness of solutions w, in a given balanced class
holds for u € Tj. Roughly speaking, the condition ©v € T, can be understood as e™® < 1
and |o/e""i00u|; < 1. From (2.185) and (3.22), we see that on the threefold X, the conditions
|2/, < 1 and ||/ Rm(wy)|lw, < 1 imply w € Tj. Thus solutions to the Hull-Strominger system
with Fu-Yau ansatz satisfying ||Q],, < 1 and |o/Rm(w,)| < 1 are unique in each conformally
balanced class. In general, the uniqueness problem for the Hull-Strominger system is still widely

open; see [44, 46, 45] for recent developments.
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Chapter 4

Fu-Yau Hessian Equations

Let (X,®w) be a compact Kahler manifold of dimension n. We identify the Kéhler form with the
metric via w = ig,;jdzj A dzF, and use Ay = gﬂ'ﬂaja,; for the Laplacian. We will use the notation
Cct = Z!(nniiﬁ)! and 64(i00u) O™ = C* (i00u)* A& ~¢. Given p € QV1(X,R), we define the differential

operator L, acting on functions by
Lyf @™ =nidd(fp) A" 2. (4.1)

For each fixed k € {1,2,3,...,n—1} and a real number v > 0, the Fu-Yau Hessian equation (3.32)

can be rewritten as
1
k

In our study of this equation, we will assume that Vol(X, &) = 1, which can be achieved by scaling

Agett + o/{Lpe(kV)” + &k+1(i88u)} = L. (4.2)

&= A, o = Xea!, ps AR = A7, Since the equation reduces to the Laplace equation
when o/ = 0, we assume from now on that o’ # 0. We remark that this equation is already of

interest in the case when p = 0, in which case the term Lpe(k_w“ vanishes.
We can also write L, as
Ly = a?* 0,0 + b0; + b0; + ¢, (4.3)
where a/* is a Hermitian section of (T20X)* @ (T X)*, b’ is a section of (TV0X)*, and c is a real

function. All these coefficients are characterized by the following equations
niddf Ap Ao = k0,0 f &", nidf ADp A&"T2 = VO fO", niddp AN&"TE = cd™,  (4.4)

for an arbitrary function f, and can be expressed explicitly in terms of p and @ if desired.
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This chapter is contained in joint work [90] with D.H. Phong and X.-W. Zhang. Our main

result is the following theorem.

Theorem 8. (Phong-Picard-Zhang [90]) Let o/ € R, p € QVY(X,R), and pu: X — R be a smooth
function such that fX puw™ = 0. Define the set Ty, by

Ty = {u € C2(X,R): e M <6, |d|le”%iddu|t < 7‘} , (4.5)

where 0 < 0, 7 < 1 are explicit fixred constants depending only on (X,®),d, p, u,n, k,~y, whose
expressions are given in (4.7, 4.8) below. Then there exists My > 1 depending on (X,0), o, n,
k, v, u and p, such that for each M > My, there exists a unique smooth function u € Y with

normalization [ e" @™ = M solving the Fu-Yau Hessian equation (4.2).

This theorem generalizes the theorem of Fu and Yau [42, 43] when £k = 1 and n = 2. For k =1,
o’ < 0 and arbitrary dimension n, solutions were previously found in [88]. Solutions in the case

k =1 were obtained independently by Chu-Huang-Zhu [17].

4.1 Continuity method
We will use the constant A depending on p defined by
—AFF <ot < AGF @ = gyidd Az, g = (g) 7" (4.6)

We will look for solutions in the region

2—7

n

Ty = {u € CY(X,R): e < §, |o|le4iddult < T}, r= (4.7)

where 0 < § < 1 is a fixed small constant depending only on (X,®), o/, p, u, k,n,~. More precisely,

it suffices for § to satisfy the inequality

9—13 9 v/
6 <ming 1, , , 4.8
< min o L A <ch Talli= + ||afc||Loo>> (4.8)
where )
_ 1 ;. _ n n "
0 = 50 1 ~ =min{k,v}, C1={2(Cx +1)(v+k)} <n—1> : (4.9)

Here Cx is the maximum of the constants appearing in the Poincaré inequality and Sobolev in-

equality on (X, ). The proof of Theorem 8 is based on the following a priori estimates:

43



CHAPTER 4. FU-YAU HESSIAN EQUATIONS

Theorem 9. Let u € Yy, be a C¥P(X) function with normalization fX e" W™ = M solving the k-th
Fu-Yau Hessian equation (4.2). Then

CIM < e" < OM, e “[idduly < CM~V2, e 3VVVu|2 < C, (4.10)
where C' > 1 only depends on (X,0), &, k, v, n, p, and p.

Assuming Theorem 9, we can prove Theorem 8. Both the existence and uniqueness statements
will be proved by the continuity method. We begin with the existence. Fix o/ € R\{0}, v > 0,
1<k<(n-1),pecQY(X,R) and p: X — R such that Jx p@"™ =0, and define the set Ty, as

above. For a real parameter ¢, we consider the family of equations

1 _
z Agek“t +a {tLpe(k*'Y)“t + &k+1(z’68ut)} = tp. (4.11)
As equations of differential forms, this family can be expressed as
5 [ e k 2 Ch_i o5 k+1 k—1 M
i {kw + o/tel ﬂ“p} A2 4 a’k”Tl(iaau) AR _Dom =0, (4.12)
n

We introduce the following spaces

By = {ue C*P(X,R): / et = M}, (4.13)
X

By = {(t,u) €[0,1] x By : u € Ty}, (4.14)

By = {1 € C*(X,R) : / Yo" =0} (4.15)
X

and define the map ¥ : By — By by

1

U(t,u) = ’

Ager 4 o/tLpe(k_V)“t + 0/ 641 (100uz) — tpu. (4.16)
We consider

I ={t€]0,1] : there exists u € By such that (t,u) € By and ¥(t,u) = 0}. (4.17)

First, 0 € I: indeed the constant function uy = log M — log fX w™ is in Tp when M > 1, and

ug solves the equation at t = 0. In particular I is non-empty.

Next, we show that I is open. Let (to,u0) € Bi, and let L = (DyW¥),.4,) be the linearized

operator at (g, ug),

L:{heOW(X,R):/ he“m":o}%{wec?’ﬂ(x,m:/ Wﬂ:o}, (4.18)
X X
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defined by

L(R)&™ = idd{e"ha + o (k — ~)tgeF =% h p} A G2

+a/Ck_iddh A (10dug)k A o RL (4.19)
The leading order terms are
L(h)&™ = "X (19 ug) A& F 1 NiOOR + - - (4.20)
where
_ ~k / —yu ~k—1 ! ~k —u:99, \k
X(tu) = @" +a'(k—y)te” ™ p ANO"" + ' Cy_y (e”"id0u)". (4.21)

Since up € Ty, we see from the conditions (4.7) that X (4,4, > 0 as a (k, k) form and hence L is

elliptic. The L? adjoint L* is readily computed by integrating by parts:

/X WL(h) "

/ h "X (19 ) N O™ F T N i00Y

X

- / hL* (1) & (4.22)
X

Since L* is an elliptic operator with no zeroth order terms, by the strong maximum principle the
kernel of L* consists of constant functions. An index theory argument (see e.g. [88] or [43] for
full details) shows that the kernel of L is spanned by a function of constant sign. It follows that
L is an isomorphism. By the implicit function theorem, there exists a unique solution (t,u;) for t

sufficiently close to tg, with u; € T since Yj is open. We conclude that I is open.

Finally, we apply Theorem 9 to show that I is closed. Consider a sequence t; € I such that
ti = txo, and denote u;, € Yj N By the associated C%P functions such that U(t;,u,) = 0. By
differentating the equation e %% W(t;, u;,) = 0 with the Chern connection V of the Kihler metric
w, we obtain

X(tiut;) A QPR A iaé(aguti)
wn/n

+Ve{atie T (k=)@ Dyur, Dgue, + (k = 7)b" e, + (k = 3" Oy, + )}

+Ve(a'tie™ " (k — 7)a"") 8,0,

+k8g1v%|§ — ke R 5y 1 (100uy, ) Opug, — t;0p{e i ). (4.23)

Since the equations (4.11) are of the form (4.2) with uniformly bounded coefficients p and pu,

Theorem 9 applies to give uniform control of |uy,| and |09duy,|; along this sequence. Therefore
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Auti is uniformly controlled in C#(X) for any 0 < § < 1. By Schauder estimates, we have
[ut, [lc2s < C.

Thus the differentiated equation (4.23) is a linear elliptic equation for dyus, with C? coefficients.
This equation is uniformly elliptic along the sequence, since X(ts,u1;) = %Cuk by (4.10) when M > 1.
By Schauder estimates, we have uniform control of ||Vuy,||q2,6. A bootstrap argument shows that
we have uniform control of ||u,||ce.5, hence we may extract a subsequence converging to us, € C¥.

Furthermore, for M > My > 1 large enough, we see from (4.10) that
et < 1, |e " i00us|n < 1, (4.24)

hence uy, € Tg. Thus I is closed.

Hence I = [0,1] and consequently there exists a C®” function u € Y; with normalization
[x €* @™ = M solving the Fu-Yau equation (4.2). By applying Schauder estimates and a bootstrap

argument to the differentiated equation (4.23), we see that u is smooth.
We complete now the proof of Theorem 8 with the proof of uniqueness.

First, we show that the only solutions of the equation

1., - ck _

—i00e" A" 4 o 2 (100u) T A" TET =0 4.25

;; 100e WA e Tt 1(2 u) w (4.25)
with |o/|CE_,|e7%i00u|¥ < 277 are constant functions. Multiplying by u and integrating, we see

that
ko

_ ,CY
OZ/iau/\au/\{k”A +o =
X k+1

and hence u must be constant since e**“&F 4 o/ kﬁ-ll (100u)*k > 0 as a (k, k) form.

(zaau) }/\w" =l (4.26)

Now suppose there are two distinct solutions u € YT and v € T satisfying (4.2) under the

normalization [y e* @™ = [y e’ @™ = M with M > My. For t € [0, 1], define

ku
d(t,u) = i0d {ekw +a/(1- t)e(k_'Y)“p} A2

k

o
+O/k:+ 1(188u)k+1 AR (1 —t)

3=

", (4.27)

and consider the path ¢ — u; satisfying ®(¢t,u;) =0, uy € Ty, [  ew" = M with initial condition

ug = u.
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The same argument which shows that [ is open also shows that the path u; exists for a short-
time: there exists € > 0 such that u; is defined on [0,¢). By our estimates (4.10), we may extend
the path to be defined for ¢ € [0,1]. By uniqueness of the equation with ¢ = 1, we know that
u; = log M —log [, @". The same argument gives a path ¢ — v; satisfying ®(t,v;) = 0, v, € Ty,
[x e"'@™ = M with vg = v and vy = log M —log [ @™. But then at the first time 0 < ty < 1 when

Ut, = Vt,, we contradict the local uniqueness of ®(¢,u;) = 0 given by the implicit function theorem.

It follows from our discussion that in order to prove Theorem 8, it remains to establish the a
priori estimates (4.10).
4.2 The uniform estimate
Theorem 10. Suppose u € Yy, solves (4.2) subject to the normalization fX e"@W" =M. Then
C'M <e" <CM, (4.28)
where C' only depends on (X,®), k, and 7.

We first note the following general identity which holds for any function .
0=d(p—k) / ePRgu A du A (i00u)F A PR 4 o// PR (j9Pu)F 1 A QrRTT (4.29)
X X

Substituting the Fu-Yau Hessian equation (4.12) with ¢ = 1, we obtain

Cck ~ ~
o =Lip— k) / eP=R0u A du A (100u)F A QR
k41 .
~n ku
+ /X e(p_k)“u% - /X eP=Rui99 {ekdj + o/e(k_”“p} A2, (4.30)

We integrate by parts to derive
/Cjchl
kE+1
~N
+/ e(p_k)“,uwf +(p—k) / P idu N idu A O™
X n X

0 = «

(p - k)/ e(P—k)uiau A 5u A (Zaéu)k /\(Z)n_k_l
X
Ho Rl / e®=% igu N id(e® 7 p) A G2, (4.31)
X
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Integrating by parts again gives

(p—k)/ ePLidu A Ou AT A N
X

=k, @ Pk [ ) " n—2
= —/ep “u+a/ P A G00p N O™, (4.32)
X n.p—-7 X
where we now assume p > v and we define
N / —yu ~k—1 /Cfb—l —u-09, \k
X =" +ad(k—y)e MpAw —|—am(e i00u)". (4.33)
Next, we estimate
_ v ’L]u U=
T N AR | |W O+ o (k —y)e it S0

n
k

C - _
+a/ . Z__l iOu A Ou A (e~ id0u)k A k1

[Vul2 on Vu \w o
> — —|a/A(k —y)[6——=
Ck _
—|o/|ﬁ|e—uiaau|k [Vu ‘w o (4.34)

Since u € Ty, by (4.7) and (4.8) the positive term dominates the expression and we can conclude

1 |Vul2

iOu A du AR Ay 2 - e Gn, (4.35)

The proof of Theorem 10 will be divided into three propositions. We note that in the following

arguments we will omit the background volume form @™ when integrating scalar functions.

Proposition 8. Suppose u € T solves (4.2) subject to normalization fX e = M. There exists

Ch > 0 such that
e <ChM, (4.36)

where C1 only depends on (X, ), n, k and . In fact, Cy is given by (4.9).
Combining (4.32) and (4.35) gives
1 U 2
S —Fk) [ eVulg
2 X

—k =
_ / eo-Rhu, y P / P 7 08 N "2, (4.37)
X p—=7 X

IN

We estimate

2 3 _ /{ B
/ IVez"|2 < 72(1’ ){HMHLOO/ (P ’WH;VHO/CHLW/ P W}. (4.38)
X - X
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For any p > 2max{~v, k}, there holds 2(7;) < p and ]% < 2. Using e™"™ < 6 <1 and (4.8), we

P
P
conclude that

A

P min{k,v}
/|V62“I% < 2(||pllpe + [lo'ellp<)d™ p/ et
X X

0 P /
v e < L[ e
Cxp/x ~ Cx Jx

for any p > 2(y + k). Let 8 = 5. The Sobolev inequality gives us

n

1/8 :
()" sex( fwore [ )
X X X

Therefore for all p > 2(y + k),

IN

le“lles < (Cx + 1)/Pp! Pl .
Iterating this inequality gives
1s~k 1 L~k i
le ]l aen < {(Cx + L)p}» &30 37 - f5 2021 57 16| .

Letting £ — oo, we obtain

1 ywe 11 _xoo i
sup e < [l oein, Ch = {2(Cx +1)(y + k)} 7070 2420 37 . g6 2i=1 57
X

It follows that

. 1/2(y+k)
sup e < C (sup e)!~(Or+k) (/ e“) ,
b's X b's

and we conclude that

aper <6 [ e ¢y - @y
X X

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

This proves the estimate. As it will be needed in the future, we note that the precise form of C

agrees with the definition given in (4.9).

Proposition 9. Suppose u € Yy, solves (4.2) subject to normalization fX e = M. There exists a

constant C only depending on (X,w), n, k and v such that

/ et < OM.
X
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Setting p = —1 in (4.32) gives
(k+1) /X e Yidu N Ou A" FTL AN (4.47)
_ /X 67(1+k)uu% N ii /X e~(1=0498) A o2
(4.48)

1 _ 14+ k _
< Yulue / (T LA YT / e~ (),
n X (I+9)n X

Since u € Y, we may use (4.35) and e” 7 < § < 1 to obtain
(4.49)

—u 9 min{k,v} , —u
eVul < 26" (ullpe + loclpe) [ e
X X

By the Poincaré inequality
(4.50)

2
/ e " — </ e“/2) SC)(/ |V67“/2|L%.
X X X

After using the definition of ¢ (4.8), it follows that
2
[ty (/ e“/2> |
b's —1-9\Ux

Let U={ze€ X :e" > %} From Proposition 8, and using Vol(X,w) = 1,
M
M = e“ﬁClM\U|+(1—\U|)7. (4.52)
X

(4.51)

Hence |U| > 6 > 0, where we recall that # was defined in (4.8). Using |U| > 6 and (4.51), it was

(4.53)

shown in [88] that the estimate
7 (5) ()

follows.
Proposition 10. Suppose u € Yy solves (4.2) subject to the normalization fX e = M. There

exists C' such that
supe “ < CM™1, (4.54)
X

where C' only depends on (X,0), n, k and .
Exchanging p for —p in (4.32) and using (4.35) gives
(4.55)

(p+k) / e PUidu A du A "L
X
ptk e—(p+”/)ui05p AOm2,

< 2/ e_(p'*'k)“,ug—Qa'
X n p+7vJx
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By using 7 < § < 1, we obtain

min{k,v}

2
min{k,7} +k
Ve_guc%gpid g o+ 2B ] o /e_p“. 4.56
J v E < s Gl + el ) [ (1.56)

We may use (4.8) to obtain a constant C' depending on (X, ), n, k, and « such that

/ Ve 242 < Cp / e P (4.57)
X X

for any p > 1. Using the Sobolev inequality and iterating in a similar way to Proposition 8, we
obtain

supe “ < Clle™|| 1. (4.58)
X

Applying Proposition 9 gives the desired estimate.

4.3 Setup and notation

4.3.1 The formalism of evolving metrics

We come now to the key steps of establishing the gradient and the C? estimates. It turns out
that, for these steps, it is more natural to view the equation (4.2) as an equation for the unknown,

non-Kéahler, Hermitian form
w=e"w (4.59)

and to carry out calculations with respect to the Chern unitary connection V of w. As usual, we
identify the metrics g and g via @ = gp; idz) A dz* and w = 9k idzI A dz*, and denote gﬂ%, gj’_C to
be the inverse matrix of gg;, gg;- Then gg; = €“gg;, gﬂ“ = e_ung. Recall that the Chern unitary

connection V is defined by
ViV =0pV7, ViV = g Ok(gmp V) (4.60)
and its torsion and curvature by
[Va, V]V = Rgo sV + T3, VsV7. (4.61)
Explicitly,

R,;qu = _aE(gjm yGnp) ijq = gjm(apgﬁzq — OqGimp)- (4.62)

o1



CHAPTER 4. FU-YAU HESSIAN EQUATIONS

The curvatures and torsions of the metrics gi; and gg; are then related by
RpPi = ]fi,;jp,- — ug; 0%, T/\kj = uké)‘j — ujé)‘k. (4.63)
The formulas (2.28) and (2.29) for commuting covariant derivatives reduce in our case to
V,;iVpVau = VpVaViu + upugy — ujugy, (4.64)
and to
ViV;V,Vau = V,ViV;Viu+u,ViV,;Vau — u;ViV,Vau

+ugVpViViu —upV,VaViu

—I—RE]-APUQA — qu,;’\u;\j. (4.65)

It will also be convenient to use the symmetric functions of the eigenvalues of 100u with respect
to w rather than with respect to &. Thus we define o,(i00u) to be the /-th elementary symmetric
polynomial of the eigenvalues of the endomorphism A’ j= gi’;u,-fj. Explicitly, if A; are the eigenvalues

of the endomorphism h'; = g“_“u,;j, then oy(i00u) = > iy -+ Ai,. Using this formalism,

i1 < <ig

equation (4.2) becomes

Agu+ k| Vul? + o/emFuL B0 4 o/ gy (i100u) — e FTDY = 0. (4.66)

4.3.2 Differentiating Hessian operators

We define

= doyp .- G.r3 8208 G bs
pq _ rq pgrs _ __© 7t aq bs 4.67
Oy onr, g 0Oy 6h“p(9hbr 979 ( )

Then the variational formula do, = gh—%éhrp becomes

Vior = o}V ugp. (4.68)

Similarly,

Viob? = o} Vg, (4.69)

We will use a general formula for differentiating a function of eigenvalues of a matrix. Let F'(h) =

f(A1,-++, An) be a symmetric function of the eigenvalues of a Hermitian matrix h. Then at a
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diagonal matrix h, we have (see [5, 50]),

OF
Ohi; %iif (4.70)
O*F . o — f
- TLTT, = T 2P ~dgp 12, 4.71
ohi;on, " 7 Zf] J+];)\p_)\q| ql (4.71)

for any Hermitian matrix 7". Since oy(h) = > iy Aig © - Aiy, this formula implies that at a

11 < <tp

point p € X where g is the identity and ug, is diagonal, then

oy = Spgoe-1(Ap), (4.72)
o ViugpVius = Y or-a(Mpq)ViugpViugg — Y or-2(Apg)|Viug|*. (4.73)
P,q P#q

We introduced the notation o,,(\|p) and o,,(A|pq) for the m-th elementary symmetric polynomial

of

~

i) = A, 5 Ay, An) € R Vand (Alif) = (A, 5 Aiy -+, Ajye o Ag) € RP2,

Lastly, we introduce the tensor FP4, which will appear in subsequent sections when we differentiate
the Fu-Yau equation.

FPE = gPT 4 o/ (ks — )e~(1HDugpd 4 afgzil_ (4.74)

We will prove that for u € Yy, FP? is close to the metric gP?. For this, we first note the following

elementary estimate.

Lemma 1. Let m be a positive integer and ¢ € {1,...,m}. For any vector A\ € R™,

¢
loe(n)] < S

< B! (475)

with |A\| = N2 12, Here, 4(\) is the (-th elementary symmetric polynomial of A\ and C¢, =
i=1 " m

m!

Mm—0)1*

Proof: Using the Newton-Maclaurin inequality,
KIDVIRN
oM < e[ M-, [Aml) < Cr, <Zm“> : (4.76)
The Cauchy-Schwarz inequality now gives the desired estimate. Q.E.D.

We can now prove the following simple but important lemma regarding the ellipticity of FPZ.
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Lemma 2. Ifu € Ty, then

(1—-27%gP < FPT < (1427 %)gP2. (4.77)

Proof: First, at a point z where gP? = d,, and ug, is diagonal, the above lemma implies

Cck_

! _pp 1
(n —1)k/2

0?7, = oo (Alp)| < |o’] Vult. (4.78)

The condition u € T}, gives |a/o}%, (2)| < 277. This argument shows that o/}, is on the order of
277gP4 in arbitrary coordinates.
Next, u € T, also implies that |o/(k — v)e™7*A| < 277, Since —AGP7 < aP7 < AgP1, we can put

everything together and obtain the estimate (7.240). Q.E.D.

4.4 Gradient estimate

The main goal of this section is to establish Theorem 11 below, which gives C! estimates with
scale. A key tool is the test function in (4.81) below, which was introduced in the paper [83] on

the Anomaly flow.

Theorem 11. Let u € Y be a C3(X,R) function solving the Fu-Yau Hessian equation (4.2).
Then
Vul? < C, (4.79)

where C only depends on (X,w), o', k, 7, ||pllcsx.e) and ||pllcrix)-
In view of Theorem 10, this estimate is equivalent to
IVul2 < CM, (4.80)

where C only depends on (X,®), o/, k, v, [|pllcs(x,e) and ||uflc1(x)- We will prove this estimate

by applying the maximum principle to the following test function
G = log \Vu|§ + (14 0)u, (4.81)

for a parameter 0 < o < 1. Though there is a range of values of o which makes the argument work,

to be concrete we will take o = 277,
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4.4.1 Estimating the leading terms

Suppose G attains a maximum at p € X. Then

_ V]Vu|§
N ]Vu\g

+ (14 0)Vu. (4.82)

We will compute the operator FP7V,V; acting on G at p.

1
]Vu\;}

1
]Vu\g

FPIV, V.G = FPIN, V4| Vul? — FPIN,|Vul2V e Vul? + (1 + o) FPlug,. (4.83)

By direct computation
FPIV, Vg Vul2 = FPgIV, Y,V uViu + FPg7 'V ;uV,VViu
+HVVuUl%, + [VVulf,. (4.84)

where |[VVul}, = FPigiy ¥ ;uVViu and IVVul}, = F pqgﬁquugp_ Commuting derivatives ac-
cording to the relation

[V}, Vilu; = Ry;iPup = Ry;iup — ugpus, (4.85)

we obtain

qugjgvjquVquu = FPigiiV,V;V juViu + qugﬁujf%qp;;\u;\ - Fp‘jgﬁujquu;. (4.86)
Thus

quVqu\Vu@ = 2Re{qugﬂVquVjquu}—i—qugﬂujﬁéquj‘u;\

—qugﬁujquug + \V?u\%g + |VVu\%g. (4.87)
Next, we use the equation. Expanding L, = aP?0,0; + b'0; + b'0; + ¢, equation (4.66) becomes

0 — Agu +a {(k _ ,Y)ef(lJr’Y)uap‘jqu + akﬂ(z@éu)} + k\Vu]ﬁ
o (k —~)2e” NPTy g 4 20/ (k — v)e” TP Re{b'u,}

+a/e” (e _ o= (htu, (4.88)

We covariantly differentiate equation (4.88), using (4.68) to differentiate 041 and using the notation

FP1 introduced in (4.74). This leads to

0= FPV;V,Veu + kV;|Vul? + &, (4.89)
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where
& = dk- 'y)e(H'Y)“{ — yaPlugyu; + @japqqu}
+o (k — 7)26_(1+7)“{ — yaPluyugu; 4 VjaPluyug + aPV Vg + apqupqu}
+o (k — ’y)e_(l‘*‘V)u{ — 2(1 + v)Re{b'u; }u; + V;blu;
+ujbiu; 4 Ojbiu; + bV ;Viu + b_iul-j}
—(1 4 7)a’e” Iy 4 of e 1Y,

+(k + 1)6_(k+1)“uuj - e_(k“)“@ju. (4.90)

We used V,WJ = @in + u; W7 to replace V by V in the above calculation. We will eventually
see that the terms &; play a minor role when u € T, and will only perturb the coefficients of the

leading terms. Commuting covariant derivatives using (4.64), we obtain
FPIV,ViViu = —FPluyug; + FPujug, — k:Vj]VuE] - ¢&;. (4.91)
Substituting (4.91) into (4.87), an important partial cancellation occurs, and we obtain

FPIV, Vo Va2 = —2Re{FPgiuuyug;} + [Vul2FPlug, — 2kRe{g’ V;uV;|Vul?}

—2Re{gﬁ€jUg} + qugﬁuj}?gpg;\w + |Vvu|§:g + |VVu|%g. (4.92)
We note the identity
FPlug, = Agu + o (k — 7)e” %Pl + (k + 1)a og 1 (i00u). (4.93)

Substituting the equation (4.88) into the identity (4.93), we obtain

FPlyg, = —k|Vul2 4 €, (4.94)
where
E = kdop1(i00u) — o (k —~)2e”IHNuaPIy 4,
—20/ (k —~)e” IHMNURe{biu;} — o/ e (MU 4 =kt Du (4.95)
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will turn out to be another perturbative term. Substituting (4.92) and (4.94) into (4.83)

FPIV,V,G = ’2 \VVu]Fg Re{qug”u uplg; }

|V yg‘vv ’Fg

2
[V IV 5

FPIY,|Vul2V 4|Vl —

Re{¢’"u;V; |Vu| }

\V E |v 2

—(24 a)k]Vu\g + Fp‘jgj’uqupg)‘ux

Vul3

“Vu |2Re{g”5 it + (24 0)E. (4.96)

Using the critical equation (4.82),

FPIV,|Vu| 2V Vul? — 2k Re{¢/'u; V| Vul?}

!V F \V 5
= —(140)*|Vul} +2(1 + 0)k|Vul2. (4.97)

Here we introduced the notation |V f|% = FP9f, f; for areal-valued function f. The critical equation
(4.82) can also be written as

gﬁvpuj (A g’ EUj Uip
|Vul2 [Vul?

— (14 0)uy. (4.98)

We now combine this identity with the Cauchy-Schwarz inequality, which will lead to a partial
cancellation of terms. This idea is also used to derive a C! estimate for the complex Monge-Ampeére

equation, [9, 60, 93, 91, 123].

¢ Vuju; |°
\Vu]ﬁ

IV 3 F

1 — 2(1+
= et (14 o)Vl 1 2T
|Vul?

|Vu\3 Re{qug U’Juzpuq}

Let € > 0. Combining (4.97) and (4.99) and dropping a nonnegative term,

2k Re{gﬂu V; |Vu] P+ (1—¢)

FPIY,|Vul2V 4|Vl — Va2

\v 1 Vu P‘VV“'FQ
204o0)(1—¢

> —(140)%|Vulf +2(1+ 0)k|Vul? + Vul? )Re{qug T ujuz,ug ). (4.100)
9
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Substituting this inequality into (4.96), partial cancellation occurs and we are left with

FPY, V.G > IVVul%, +

\V |2 |VVU|F9

!V |2

+{20 — 22(1 + 0)} = Re{ FP g/ wsu,ug; }

\V F
—|—Jk:]Vu|3 — (1 +0)%|Vul%

PPIgiu; Raus — o Re{g Eus} + 2+ )€ (4.101)

_l’_
[Vl \V F
Since u € T, we now use (7.240) in Lemma 2 to pass the norms with respect to FP? to gP? up to

an error of order 276, We choose

= (1+0)"2(1+ 2*6)*1%. (4.102)
Then
(14 0)2|Vul% < %Nu\f], (4.103)
and )
e ‘2|vvu\pg > 2(110)2 1 +; , IVl |2|vvu\g (4.104)
Since 0 = 277, we have the inequality of numbers 5% % Thus
a PW ul}y > 4 a Pyvvmg. (4.105)
We also note the inequalities
Vu ’2|VVU|F9 >(1-276 )]V ‘2|VVu| (4.106)
and
(2o -2+ o) e (PP )
> —{2-(1+0)'(1+2% o1 +27%|VVul,
> —20(1+4279)|VVul,. (4.107)
The main inequality (4.101) becomes
2
FPIV,V,G > (1-276 )Iv ,Q\VV 2+ 1 ‘vvvu%g —20(1+27%)|VVu,
+EIVUI§ Vu |2qu9 1t Ry s
~ ‘QRe{gﬂS uz} 4 (2 4+ 0)E. (4.108)
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4.4.2 Estimating the perturbative terms
4.4.2.1 The &; terms

Recall the constant A is such that —Agjﬁ < alt < Aﬁﬁ. We will go through each term in the
definition of &; (4.90) and estimate the terms appearing in ﬁl{e{gﬁé’juﬁ by groups. In the
following, we will use C' to denote constants possibly depending on o, k, v, aP?, b, ¢, i, and their

derivatives.

First, using 2ab < a? + b? and e~ < §, we estimate the terms involving VVu

2l (k=) _ wl i . - _ _
Aotk ), |(w2 N =00 gy augyn; + ¥ jaPugy + (k = )P g + Brugy)|
< 20/A(k — ) (k +27)]e | VVu|, + C'B_A’“e_“/2M
[Vulg
VVu w2 |V V|
< 2 |AMP (k= ~)|6Y2Vu }{51/2 k 4+ 2y)|Ad 1/2|g} Ce /219
{1aP72(e = o219l {0206+ 2o o
VVul? |VVul?
< (o JAG = 7)25Vul2 + 41A|(F +7)%8 ¢ ! . 4.1
< Ak —7)70|Vulg + 4[Aa’|(k + ) Va2 7 VaP Clo)e (4.109)
Second, we estimate the terms involving VVu
2|/ (k
W ~(m)e) 0Ty { (k — 7)aPIV ;Y pu ug + PV, Vu}|
- C _ |VVul
/ N2 Yu —(14y)u/2 1A 1/2 Yu/2 g
< 2l |(k —)*Ae |VVu|g+2{|O/A|1/2 }{|aA| |k —~le Vi, }
|VVul? | VVuf? C?
< "k — ~)2AS g 2 "Al(k — ~)2e= % g (1+’\/)u
] s G
VVul?
< 2|o/|A(k:—7)25| ‘g—|—6!a’|(k:—7)2A|Vu!§—|—Ce_“. (4.110)

|Vu\§

Third, we estimate the terms involving Vu quadratically
2l (k —~)| _ = A .
o e g (= ) Dy g = 21+ 5 Rell g+ 5
< Cee AV, < ZIVul2 + Clo)e 0 < T vuf2 + e (4.111)
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Finally, for all the other terms in £;, we can estimate

2l (k — )| _ wl i _ N _
|\(Vu|2)| W gl { v (k — y)aPTupugu; + V;0Puy, + 0;0%ug}|
T L T T U L
e—u/2
< 20a/|A(k — 7)ye "Vl + CemTHNe 4 Cem(tMul___ 4 Cem (ke g (bDu"___
‘Vu|g |Vu‘g
—u/2
< 20|k = 7)*V8|Vul2 + Ce ¥ + Ce " e—. (4.112)
Vg

Putting everything together, we obtain the following estimate for the terms coming from &;.

€l < {20 |Ak = )21 +7)0+ T} IVul2 + Ce R
\v gt = ’ [Vl
|V @uQ |VVul?

4lo/|A 2 I 42|/ |A(k —~)? g, 4.11

HA AR+ 96+ 0} a® + el = ) (4.113)

4.4.2.2 The £ terms

Next, estimating £ defined in (4.95) gives

2+0)& < k(2+0)|a'|]ak+1(i85u)|+(2—I—J)|O/A|(/<:—7)26_7“|Vu|3

+2]lo (k = )| ee e 2 Vulg + Cem U0 4 Cem M (4.114)
Using e < § <1 and
2| (k — 4)b|| s e e T2 V|, < 1%|Vu|§ + C(o)e e 2, (4.115)
we obtain
(2+0)|E] < k(2+ 0)|||o)s1(i00u)| + (2 + o)|a’A|(k — 7)25\Vu|§ + %]VU@ +Ce™™.
By Lemma 1, we have

k+1

k| ||ogi1(i00u)| < k|| IVVuli |V Vulg < {]o/|CF_ [V VUl }HVVul,. (4.116)

_n
nl/2pk/2
Since u € YTy, we have |a’\C£71|V?u\Z <277, Thus

2+ )€l < {2+ o)/ Al(h—7)%0 + = }|Vu|2+2 "2 4 0)|VVul, + Ce ™. (4.117)
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4.4.3 Completing the estimate

Combining (4.113) and (4.117),

€l + 2+ 0)|E] < {5la/|Ak =)+ )3 + T} [Vul]

IV [Vul2
|VVul? |VVul?
2|/A|(k — )% ¢t {4]a/|A(k + )25 g
#2la Atk =)0 gt + (4 IAG+7)%8 + ) e
. B 6—u/2
+27 (2+0)\VVu]g+Ce*“+Ce’“|vu’ . (4.118)
g

Since ¢ = 277 and (k —v)2(1 +7) < (k + )3, the definition (4.8) of § implies

5lo/|A(k —7)*(1 4 7)8 < Ao/ Ak +7)%5 <277,

oo\q

Then, we have

o |VVU\§ 56 \V?u@
4 |Vul? [Vul?
—u/2

o
]z < = 2
Vu ’2\9 5u|—|—(2+a)\8| < 4|Vu|g+

e

+Ce ™™ + Ce™ )
|Vu|g

Using (4.119), the main inequality (4.108) becomes

FPIV,V,G > (1-27°) IVVul2 = {20(1+27%) +277(240)} [VVul,

!V F

e—u/2

’v“‘g.

FPigi u]quz uy —Ce ™ —Ce™

g 2
+4|Vu\g—|- Vu ‘2

By our choice ¢ = 277, we have the inequality of numbers

{20(1+26) +277(240)}" o %

Thus

{20(1 + 2—6) +277240 } )} VVul,

< (1-279)

1
|V PWV yg+ {201+2 6) +277(240))” _2_5\%]3

< (1—2_)

Vu |2|VVu|g \Vu|g.

We may also estimate

FPlgiiy R P > —Ce ™.
NU@ g Ujligpy Uy Z

61

+277(2 4+ 0)|VVul,

(4.119)

(4.120)

(4.121)

(4.122)

(4.123)



CHAPTER 4. FU-YAU HESSIAN EQUATIONS

Putting everything together, at p there holds

Cefuefu/Q

; o
0> FPMV, VG > —|Vul|2 — ———— — Ce ™ 4.124
= pYva - 8| u‘g |vu|g € ( )
From this inequality, we can conclude
[Vul2(p) < Ce ), (4.125)
By definition G(z) < G(p), and we have
Vul2 < CeulPlettollulr)—n) < oprt, (4.126)

since e¥Pe~t < C and e % < CM 1 by Theorem 10. This completes the proof of Theorem 11.

4.5 Second order estimate

The main goal of this section is to establish Theorem 12 below, which gives C? estimates with
scale. A key tool is the test function in (4.147) below, which was indeed introduced in the paper

[83] on the Anomaly flow.

Theorem 12. Let u € Yy, be a C*(X) function with normalization [y e*&™ = M solving the
Fu-Yau equation (4.2). Then

IVVul? <CM™ (4.127)
where C' only depends on (X,w), &/, k, v, [|pllcax.e) and [|pllc2(x)-

We begin by noting the following elementary estimate.

Lemma 3. Let £ € {2,3,...,n}. The following estimate holds:
|7 BTV jugy Vius | < CLZ3IVVulS 2V Va2, (4.128)

Proof: Since the inequality is invariant, we may work at a point p € X where g is the identity

and ugy is diagonal. At p, we can use (4.73) and conclude

|97} jugy Vs < 0D |oe—a(Alpa) || Viugy > (4.129)

L 2/

By Lemma 1,
2

2 |VVuS2 (4.130)

—
o2 (Alp)l < T

This inequality proves the Lemma. Q.E.D.
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4.5.1 Differentiating the norm of second derivatives

Lemma 4. Let u € Yy, be a C*(X) function solving (4.2) with normalization [, e* = M. There

exists a constant C > 0 depending only on (X, ), &', k, v, [|pllcs(x.w) and ||pllc2(x) such that
FPIV,V |VVuZ > 2(1—27°)|VVVul2 — (1 + 2k)|o/| VARV V)2
—(1 + 2k)|o/ |~/ R R O T2
—CM Y2V Vul, - CM ™V Vul, — CM 1. (4.131)
We start by differentiating FP? (4.74) by using (4.69).
ViEFPT = —o/ (k — ) (1 +~)e” UM uyaPT 4 of (k — 5)e”THFNUT;0P7 4 a’aZingu;r. (4.132)
Differentiating the Fu-Yau Hessian equation twice corresponds to differentiating (4.89), which gives

0 = o Vioh? P Viug Vjug, + FPIV;V;V,Vau
+kV;Vj|Vu|3 —ad(k—v)(1+ 7)6—(1+7>"apqu;vjvpvqu

+a/(k — y)e—“ﬂ)“v;apqvjvpvqu + V3iE;. (4.133)
Next, we use (4.65) to commute covariant derivatives and conclude

FPIV, Vauy; = —O/O'Ziggv]'quvzugr
—FP1 [u,V;V,;Vqu — u; ViV pVau + ugVy,V;iViu — u;V ViV jul
—qujoApu(p\ + ququgAu;\j

—kV;Vj|Val + o/ (k = 7)(1 +7)e” a3V Y,V gu

—a (k — 7)e” HNUTPIV ¥,V u — V3E;. (4.134)
Direct computation gives
quVpV(ﬂV?uE = 2gsgngquVquu5ju;s + 2|V?Vu|2pgg. (4.135)

Recall (7.240) that we can pass from FP7 to the metric gP7 up to an error of order 27¢. Substituting
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(4.134) into (4.135) and estimating terms gives
FPIV,V VU2 > 2J(1— 279 |VVVu? - /g™ g0V gy Vs tinm|
pYvVaq g = g g g k+1 YJIi%gp vV iY%sram
—C’|VVU|9\VVVU|Q{Vu|g +e 7 Vuly + e‘”“e_éu}

C’|V?u|g{6_“]V@u|g}

—2k gsgngV;VﬂVu\gufs -2 gszgﬁVgEjufs . (4.136)
The condition u € Yy, (4.7) together with k£ < (n — 1) gives
CF2 ||V Vulf < |/ |CF_y | VVulk < 277 (4.137)
Therefore by (4.128)
]a’gmggjﬁazg_’;gvjquvlgu@nuﬁm| < 2_7\VvVu|§. (4.138)

In the coming estimates, we will often use the C° and C' estimates, and the condition u € Y},

(4.7), which we record here for future reference.
e <CM™Y |VuZ<CMT, |VVulg < Jof |7V ERHE (4.139)

where 7 = (C¥_,)71277. Since u € T}, we have M = fX e*@w™ > 1, and so we will often only keep

the leading power of M since M > 1. Applying all this to (4.136), we have

FPIV, Ve VVul? > 2(1-27°)|VVVul?
—CM ™YYV, |VVVul, — CM ™V Vul, | VVul,

—2k|g" 7"V V| Vul2uss| — 2|97 7 V€ s (4.140)

We will now estimate the two last terms. We compute the first of these directly, using (4.63) to

commute derivatives.
2kgsggj’:Vng\Vu]3ufs = 2kg5igjr{gpquqvjvivpu + ¢"u,V;V;Vau
+gPIV ;VpuViVau + gPus,ug;

_i_gpfiungijW _ gpququ;jup}urs- (4.141)
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We estimate

’2k985gﬂvivjvu|§ufs < k{4\vvvuyg\w|g+2|v%\§+2\vvuy§

+Ce | Vul? + 2|Vu|§\VVu|g} (VVul,. (4.142)
We will use (4.139). Then

'%gsigﬁv;vj\vu@um < 2kl |TVRPVRIO VU + 2k [T ERYVE VU2 (4.143)

+OM V2Vl +CM 2+ CM L.

Next, using the definition (4.90) of &;, we keep track of the order of each term and obtain the

estimate
|gszgﬁVgEJ~uf§| < C(a,b,c, a/)|V?u\g|V?Vu\g{ewe“/2 + e”“]Vu|g}
+C(a, b, c)\V?ulg{e_W]Vu\f] + e Ve 2|Vl + e_(1+7)“}
+C(a,b,c, 0/)|VVu|g|VVu|g{e_7“|Vu|3 + 6_7“6_“/2|Vu|g + e_(HV)“}
+C(a,b,c, a/)|V@u|g{6_(2+7)” + 6_(1+7)“6_“/2|Vu\g + 6_(1+7)“\Vu|§
—&-e*(lﬂ)“e*“/QNuB + e(lﬂ)“\Vu]‘gl}
+C’(,u)|VVu\g{e_(k+1)“|VVu\g + e_(k’Ll)“]VuE

+e—(k+1)ue—u/2|vu|g +6—(k+2)u}

+(k — )29 77| (o e UEVUGPIV 1V W ung s |
k= Alg*F g (o e VUV Vi) ur|
k= 7197 (o e Ty P Ty g g |

+(k = 7)2g* 77| (o eV aP T g Y|

+(k — 7)2951_“ng|(o/e_(1+7)“apqvjvpuv,;vqu)ufs |. (4.144)

We will use our estimates (4.139). We also recall the notation —AgP? < aP? < AgP9. We use these
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estimates and commute covariant derivatives to obtain

9 TV Ejuns| < CMTV2VVVul, + CM ™Y VVuly + CM ™" + CM 2
+CM~*FD 4 o~ kD)
+(k — 7)267(1+7)“98Egj7_1|(a/aqujVEVpuuq + a/aquEjApuAuq)ufs\
+|k — 7|6_(1+7)“gs’;gﬁ|(a’biVjV,;Viu + o/biR,;inuA)ufS]
+2e 7| [A(K + )2V Vulg| VVul?
e |A (K + )2V Tl [V Va2 (4.145)
Since u € T}, we have 2|o/|A(k + v)%e 7 < 1.
9% 7" ViEurs| < o/ |TVE VMU oA RVl

+CM Y2 VVVu|, + CM 7Y VVul, + CM L, (4.146)

Substituting (4.143) and (4.146) into (4.140) and keeping the leading orders of M, we arrive at
(4.131).

4.5.2 Using a test function

Let
G =|VVu[; + 6|VulZ, (4.147)

where © > 1 is a large constant depending on n, k,a’. To be precise, we let
0 =(1—2"97"1(1 4 2k)|o/|"VFr1/* 11}, (4.148)
By (4.87),

FPIV, V4 |Vul? > |VVul}, + [VVulF, — 2|Vulg| VVVul,
—|Vul2|VVuly — Ce™|Vul?2. (4.149)

Applying (4.139) and converting FP? to gP? yields

FPIV, V| Vul2 > (1-279VVul2+ (1 -279)|VVul2 - CM~/?|VVVul,

~CM ™'\ VVu|, — OM ™2, (4.150)
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Combining (4.131) and (4.150), we have

FPIY,VeG > 2(1-27°)|VVVul2 + |[VVul? + |[VVul?
—CM~ YAV VVu|, - CM~YVVul, - CM~L. (4.151)

We will split the linear terms into quadratic terms by applying

_ 1, C?
CM~Y2 VYV, < iyvvwf, + 7M—l, (4.152)

CMYVVu|, < e
¥= 4

M7+ |VVul2. (4.153)
Applying these estimates, we may discard the remaining quadratic positive terms and (4.151)
becomes

_ 1 _
FPiv, V.G > 5|vvu|§ -CM™ (4.154)

Let p € X be a point where G attains its maximum. From the maximum principle, |V?u\§(p) <

CM~!. We conclude from G < G(p) that
VVul? <CM™. (4.155)

establishing Theorem 12.

We note that many equations involving the derivative of the unknown and/or several Hessians
have been studied recently in the literature (see e.g. [8, 10, 11, 18, 19, 21, 59, 70, 66, 16, 97,
102, 103, 111, 122, 123] and references therein). It would be very interesting to determine when

estimates with scale hold.

4.6 Third order estimate

The goal of this section is to establish C? estimates for general Fu-Yau Hessian equations. A key
tool is the test function (4.157) below. Note that it is different from the test function used for
C?3 estimates for Monge-Ampere equations. Rather, it is inspired by the test function used by Fu
and Yau [42, 43], although we apply it here to Hessian equations rather than to Monge-Ampere

equations.
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Theorem 13. Let u € Ty be a C°(X) function solving equation (4.2). Then
IVVVul2 < C. (4.156)
where C' only depends on (X, ), o, k, v, [|pllcs(x.e) and [|pllcs(x)-

To prove this estimate, we will apply the maximum principle to the test function

G = (|VVul2 + n)|VVVu|2 + B(|VulZ + A)|VVul?, (4.157)

where A, B > 1 are large constants to be specified later and n = m7%/ klo/ ]*2/ k. We will specify

m > 1 later and 7 = (C¥_;)71277. The condition (4.7) u € T, implies
|/ |VRI V|, < 7l (4.158)

Our choice of constants ensures that n and ]V?u\g are of the same o scale.
As noted earlier, if u € T then M must be greater than 1. By our work thus far, as long as
M > 1 we may estimate by C' any term involving e~ %, |Vuly, [VVuly, |[Rm|, or |T|,, where |Rm|,

and |T'|, are the norms of the curvature and torsion of g = e"§. Also, since

Veuz; = Oguzy — Mojuiy — upuzy, 105 = 97 00dpy, (4.159)

we note that Theorem 13 proves the third order estimate (4.10) in Theorem 9.

4.6.1 Quadratic second order term

Lemma 5. Let u € T be a C*(X) function solving equation (4.2). Then for all A > 1 larger
than a fized constant only depending on |Vu|y and for all B > 0,

i A
FPIV, Ve {(IVul? + A)|VVul>} > 5\vva§ +(1=27%)|VVu;
1

—ﬁyv?vu\;} — C(A,B). (4.160)

where C(A, B) only depends on A, B, (X,®), o/, k, v, |Ipllcax o) and ||pllc2(x)-
Differentiating (4.89) gives
FPIV, ViV, Vu = —a'(k—»)V(e”TNGPNY 0,

—o/ (V4oL )V jugy — kV V5| Vul? = VE;. (4.161)
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Commuting derivatives
FPIV, V.V Vju = FPIV,V;V,Vau+ FPIV,(Rg’;Vau — ugeuy)
—FPITA V3V Vqu — FPIN (4, VjVou — u;VpVau).  (4.162)
We compute directly and commute derivatives to derive
FPIV,V VY2 = 2Re{g®g/IFPIV,V, Y,V uV;V gu} (4.163)
+gP IV Y juFPIR, VsV qu + g g7V Y juFPIR . AV su
PG gIig 7,V uV VeV qu + FPgP i .V YV ;uV V5V gu.
Combining (4.161), (4.162), (4.163) and converting F?? to g’? using Lemma 2, we estimate
FPI,Va|VVulZ > (1-27%VVVull+ (1-27%VVVul?
—204’Re{geggjga£ﬂ§v@ugrvjutijng*u} — QRG{QZngJVgSjVBVJU}
—C|VVuly([VVVu|, + [VVVul, + [VVul, + 1). (4.164)

Next, using (4.128) we estimate

—2Re{a'g£5gjgaiifv4u§7«VjquVEVCzu}

Y

=20} 31 ||V VUl [V Vul [ VV Va2

> —20h T R VROV [V V2 (4.165)

and using (4.90) we estimate

197V V5V qu| < CIVVul {1 + |VVul, + [VVVul, + [VVVuly}. (4.166)
Thus
FPIV, Vi |VVul? > (1-27%|VVVul?+ (1-27%|VVVu|? (4.167)
—C|VVul{|[VVVul? + |[VVVuly + [VVVuly + [VVulg + 1}.
By (4.92),

FPI, Ve Vul? > (1 - 279 |VVul? + (1 - 27%)|VVu|? - C|VVul, — C. (4.168)
Direct computation gives

FP,Va{(IVul + A)|VVu2} = (|Vul2 + A)FPIV, Ve VVul2 + |VVul2 FPIV, Ve Vul?

+2Re{ FPIV,|Vul?V 4| VVul2}. (4.169)
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We estimate

2| FPIV,|Vul;Ve VVul?| < 2(1+427°)|VVulj|Vul|VVVul,
+2(1 4 27%)|VVulZ| Vuly [ VVVul,

+C|VVul{|VVVul, + |VVVul, + 1} (4.170)

Substituting (4.167), (4.168), (4.170) into (4.169),

FPI,VA(IVul2 + A)|VVull} > A1 —2"%{|VVVuZ +|VVVu2} + (1 -27%)|VVu|;
—3|VVul2|Vulg {[VVVuly + [VVVuly}
—C(A)|vvu\g{|v?vu\j + |VVVul, + |[VVVul,
+HVVul2 + |VVulg + 1}. (4.171)
Using 2ab < a? + b?,
2 v -7 4 592 2 2
3IVVuly|Vuly[VVVu| <27V Vul, + 2737 |Vul [VVVulg, (4.172)
3|VVul | Vulg[VVVu| < 277V V) 4 2°3°|Vul2 [ VV V|2, (4.173)
C(A)?
C(A)|VVVulg|VVul, < [VVVul? + (4)‘VW|§ (4.174)
_ 1 _
C(A)|VVVul2|VVu|, < ﬁwvvfu\g +23C(A)’B|VVul (4.175)

for a constant B > 1 to be determined later. Then

FPv, Ve {([Vul2 + A)|VVul2} > {A(1—27%) —203%|Vu|2 — 1} |[VV V[

+{A(1—27%) — 23| Vul2 — 1} [VVVu|
L
2°B

—C(A, B){VVu|g +|VVul? + ]VVu|3}.

+(1—-27°)|VVaul; — IVVVul; (4.176)

The terms [VVuly, 4+ [VVul? 4+ [VVul? can be absorbed into [VVul[j by Young’s inequality. For
A > 1, obtain (4.160).
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4.6.2 Third order term
Lemma 6. Let u € Yy be a C°(X) function solving equation (4.2). Then
_ _ _ 1 _
FPv, Ve {(IVVul +n)|[VVVul} > Eyvva;}
—C’|VVVug{\VVVu]g|VVu]g + |[VVVul, + \VVu|g}
C{vauyngu@ + |[VVVulZ|VVul,
+VVVul | VVul? + [VVVuly| VVuly + 1}. (4.177)
where C' only depends on (X,w), &', k, v, |Ipllcs(x.wy and [|pllcs(x)-
To start this computation, we differentiate (4.134).
PPV, Vaug; = —o/'Vi(oh?*)VugVius — o/ ob2 ViViug, Vus,
—O/Uzi;gvj'u(jpvngu@ + Vi [—quupvgqu + quungqu]
+VZ‘ [—FngqVPUgj + quugvpqu] + Vz‘ [quéququj — quﬁngpu(p\]
—kVi | g gV jug, + ¢PupV gugs + PV iV ,uV iV au + gPTug g
+9"TugR yun — 9" ugugzup | + Vil (k = 7) (1 +7)e” P17V jug,)
—Vilo (k — 7)e” WU 1aPIV jug,] — Vi ViE;. (4.178)
Our conventions (4.61) imply the following commutator identities for any tensor Wi,

VpVaWi,; = VoV Wi, + Ry Wy, — Rap Wi, (4.179)

apk
VpVaViWi; = ViVpVaWi, + T VaWiy — V[ Rap " Wy, — Ra i Wiyl- (4.180)

Thus commuting derivatives gives

FPIV, VViug;, = FPIVVpVaug; + FPuVpVaug; — FPu,ViVaug;

+FPIV [ Ry jugy — R us,)- (4.181)

We compute the expression for FPIV,V; acting on |V?Vu\§, and exchange covariant derivatives
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to obtain

FPIV,V [VVVu2 = 2Re{g'lg™ ¢’ FPIV, Y,V up,V quz, }
+FPgd g gl up, VgV gu jet I P10 g oI oV quip, V 4V pu fe
+ Mg gV Y g Ry, us, — FP9* 9T VoV qup Ry, ey
—FPigedgbgel R s VoV qu s, + FP1g g% g Ry us\ Y,V gu
10T s FPIR, Vsus, + g™g PV gup FPIR, AV s,

qpd apf

—ganeggcfvauBchqRQpAeVjuf)\' (4182)
Substituting (4.178) and (4.181) into (4.182), and using Lemma 2 to convert F*? into gP9, we have

FPIV, Vg |VVVul > (1-27%|VVVVuf] + (1-27°)|VVVVu|?

—20'Re{g" g 7" Vi (o121 )V jugy Vs V guig, }
—20/Re{g"g" g o} TV gy Viuse V gug, }
—20/Re{g"g"" g o} TV jugp Vi Vus: V gug, }
_c{(yvvvwg VYY) VYV, + VIV,
+(IVVVuly + [VVVuly + 1)|VVul,|[VVVul,
+VVVul} + [VVVu|? + \v?vuyg}
—2Re{gi‘iga’;gjgviv,;€jVgul;a}. (4.183)

We used (4.132) to expand and estimate terms involving V;FP?. For the following steps, we will

use that |o/|V*|VVul, < 7V/* for any u € Tj, where 7 = (C*_;)71277. We also recall that we use

the notation C%, = m m!

Tm—0)1" If £ > 1, we can estimate

2| g"g* gV i (0PI jugy Vius, V gug,| < 20 |CEZ5IVVu[F 2 VYVl

A

(2Ch_ 7)o/ Fr 2RV Y,

= 27/ [/ Rr 2R TV VL. (4.184)

We used C’S:g < CF_,. If k = 1, the term on the left-hand side vanishes and the inequality still
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holds. Using the same ideas, we can also estimate

—20/Re{g"g™ g7 o ViV jugyV jusy V g, } — 20/ Re{ g™ g™ g7 0T *V jugy ViV jusy V gug,

v

—zya'|c’,§:;|v%\’;W?wy;{\vvvv% + |vvv%|g}

Y

—(205_17)|a’yl/’f7—1/kyvvw\§{yvvvvmg + \vvvvug}
= —2_6|a’|1/k7_1/k]VVVu|§{|VVVVu|g + |vvvvu|g}. (4.185)

The perturbative terms can be estimated roughly by using the definition (4.90) of &; and keeping

track of the orders of terms that we do not yet control.
—2Re{g" g gV V1V quz,} > —Cyvvag{yvvvvuyﬁ\vvvvu\g
+(|VVVuly + [VVVulg)|VVuly + |[VVVul, + [VVVu,

+VVul} + [VVuly + 1}. (4.186)
Applying these estimates leads to

FPIV,Va|VVVu? > (1-275)[|[VVVVu + |VVVVu|Z] - 275/ |k 2k VTVl
—2781/ | YRR OO VU2 [[VVV Vg + VYV Vg
—CP (4.187)

where

P = |[VVVVu|VVVul|, + |VVVVu|,|VVVu|, + [VVVVaul,
+|IVVVul, [ VVVuly | VVul, + |VVVul, [ VVVul,
+VVVUZ|VVulg + [VVVulg|[VVul? + [VVVulg[VVulg

+|VVVulg|VVulg + [VVVuf} + [VVVul? + |[VVVul,. (4.188)

We used the fact that the difference between |VVVVu|, and [VVVVu|, is a lower order term
according to the commutation formula (4.179).

Next, we apply (4.131) to obtain

FPIV,V;|VVul? > [VVVul? — C|VVVul, — C|VVul? - C|VVul, — C. (4.189)
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We directly compute

Frv, Ve {(IVVul2 +n)|[VVVu2} = |[VVVUZFPIV,V[VVul?
+(|IVVulZ + ) FPV, V4| VVVul?

+2Re{ FPIV,|VVu[;V;|VVVul2}.

We can estimate

2Re{FPIV,|VVu2V4VVVulZ} > —4(1+427%)|VVul|g|VVVu[Z|VVVVul,
—4(1 4 27%)|VVuly[ VV VU2 VVV V|,

> —4(1+279)|o/| VRV R VYV 2 VYV V),

—4(1 4 275) ||V RV R VU2 VYV V.

(4.190)

(4.191)

Combining (4.187), (4.189), (4.191) with (4.190), setting n = m|a/|~%/*7%/% and using [VVul? <

|o/|~2/k72/k Jeads to

FPIV,Va {(IVVul + 1) |VVVul?}
m(1 — 2—6)\a’y—2/k72/’“{\vvvw§ + yvvvvuyg}

Vv

—4(1 + 2_6)]a'|_1/k7'1/k\VVVu|§{ IVVVVu|, + |VVVVu|g}

—27%(m + 1)|o/|1/k71/’fyv?vu|§{yvv?vu|g + |v?v%|g}

+{1 —275(m + 1)}\v?vu13 — C|VVVul|VVul? — CP.
Using 2ab < a? + b%, we estimate

A(1 + 279/ |7 YER YR VU VU [V V V|, + VYV Vulg}

IA

o _ 1
16(1 4 27)%[/ |72/ * 7RV VVu]? + [VVVV2} + 5\VVVu]3,
and

270(m + 1)|o| "R R VUV {|[ VYV Vg + [VVV V)

IN

1 _ _ _
§|a'|_2/k7'2/k{|VVVVu|3 +|VVVVZ} +272(m + 1)2VVVul?.
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The main inequality becomes

Frav, Y {(IVVul2 +n)|VVVul2}

\Y]

1 _ _
{m(1—275) —16(1+275)2 - 2}]a'|2/k7'2/k{VVVVu]§ + |vvvvu|§}

2
~C|VVVul|VVul? - CP. (4.195)

1 _
+ { —25(m+1)—272(m + 1)2} IVVVul;

Next, we estimate terms on the first line in the definition (4.188) of P

C{IVVVVul, + |VVVVul, }[VVVul,

1 _ _ _
< E]a’\_Q/sz/k{\VVVVu\g + |VVVVu2} + 8C2 |/ PR 72/F TV V2 (4.196)

and

C|VVVVul, < %\a'r?/k#/kwvvwg +4C?|of [P k2K (4.197)

and absorb |V?VU|2 + |V?Vu|£27 +|VVVul, into 2_12|VvVU|3 plus a large constant. We can now
let m = 18 and drop the positive fourth order terms. We are left with

FPIY, Ve {(IVVul? +n)|VVVul2}

v

{; —27%m+1) —272(m+1)? - 2—12} IVVVul,
—C\vvvuyg{\vvvmg\vvub +|VV V|, + yvvu|g}
—C{\vvag\vag + [VVVul|VVulg + [VVVulg|VVul?
+|VVVu|,|VVul, + 1}. (4.198)

Since m = 18,

1
3 27%(m+1)—27%(m+1)2 —2712 > 271, (4.199)

and we obtain (4.177).
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4.6.3 Using the test function

We have computed FPIV,V; acting on the two terms of the test function G defined in (4.157).
Combining (4.160) and (4.177)

FPIV,V,G > %yvvw@ + ATBWVVu@ +(1-27°)B|VVul,
c{\vvvu|g|vvvuyg|vvu|g +|VVVuly|VVVul, + [VVVul,|VVul,
+HVVVUZ VYUl + [V V2| VVulg + [VVVulg[VVul?
+]VVVu|gVVu|g} — C(A, B).

The negative terms are readily split and absorbed into the positive terms on the first line. For

example,
_ c?
CIVVVulg|VVVuly|VVuly < [VVVul? + vavvu@yvvu@, (4.200)
CIVVVul2|VVul2 < 27T|VVVul) + 2°C*|VVul; (4.201)
C|VVVu[Z|VVuly < 277 |[VVVu|; 4+ 2°C*[VVul?. (4.202)

This leads to

] _ AB B
FPIV, VG > 277|VVVul) + = - 1}VVVul? + {5 - C}VVul,

—C(4, B). (4.203)

By choosing A, B > 1 to be large, we conclude by the maximum principle that at a point p where

G attains a maximum, we have
]V@Vuﬁ(p) <C, |VVu]3(p) <C. (4.204)

Therefore |[VVVu|, and [VVul, are both uniformly bounded.

4.6.4 Remark on the case £ =1

In the case of the standard Fu-Yau equation (k = 1), to prove Theorem 8 we can instead appeal
to a general theorem of concave elliptic PDE and obtain Hoélder estimates for the second order
derivatives of the solution. To exploit the concave structure, we must rewrite the Fu-Yau equation

into the standard form of complex Hessian equation.
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Recall that 61(x) @™ = nxy A @™ L, Ga(x) 0" = @XQ A @™ 2. A direct computation with
equation (3.32) gives

_ 1
Ga(e"® + e p + 2d/i00u) = 71(712)6% —2(n — 1)/ |Vul2 —2(n —1)dp (4.205)

+2(n — 1)()2e " (a?*ujug — biu; — biu;)

+2(n — 1)(a')?e e+ (n — 1)e “61(a'p) + e 24Go(dp).

We note that the right hand side of the equation involves the given data o', p, i, u and Vu. Since
u € Y1, the (1,1)-form o' = €@ + o’e " %p + 2a/iO0u is positive definite, and thus both sides of
the above equation have a positive lower bound. Moreover, our previous estimates imply that we
have uniform a priori estimates on |u[|c1.5(x) for any 0 < 8 < 1. The right hand side is therefore
bounded in C#(X). Since 6;/ 2()() is a concave uniformly elliptic operator on the space of admissible
solutions, we may apply a Evans-Krylov type result of Tosatti-Weinkove-Wang-Yang [108] (see also
[118]) to conclude ||ul|q2s < C.

However, for general k > 2 it is impossible to re-write equation (4.2) into a standard complex

Hessian equation and thus there is no obvious concavity that we can use.
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Chapter 5

Anomaly Flow

5.1 Basic properties

Let X be a compact 3-dimensional complex manifold equipped with a nowhere vanishing holomor-
phic (3,0)-form Q. Let F — X be a holomorphic vector bundle over X. Let wp be a Hermitian
metric on X, and Hy a Hermitian metric on E. We will study the following flow for the pair of

metrics (w(t), H(t))

/

3 (|Qlww?) = 90w — % (Tr(Rm(w) A Rm(w)) — Te(F(H) A F(H)))

H'o,H = —A,F(H) (5.1)

with initial condition w(0) = wy, H(0) = Hy. Here o is a fixed parameter, called the slope
parameter in the physics literature. We use Rm(w) and F(H) to denote the endomorphism-valued
curvature (1, 1) forms of the Chern connections of w and H, as described in §2.1.3.

We call the coupled flow (5.1) the Anomaly flow. This flow was introduced in joint work with
D.H. Phong and X.-W. Zhang [89] and further studied in [83, 84, 87, 28]. The current chapter is
based on our joint work [84].

First, we remark that the Anomaly flow is of particular interest when the initial metric wy is
conformally balanced (d(||Q||w,wg = 0) and the cohomology condition cha(X) = chy(E) is satisfied.
In this case,

[Tr(Rm(w) A Rm(w))] = [Te(F(H) A F(H))], (5.2)

as Bott-Chern cohomology classes. By taking the evolution of d(||f2||,w?) along the Anomaly
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flow, we see that the conformally balanced condition is preserved along the flow. In fact, the flow
preserves the conformally balanced class of the initial metric wy.
/

a

%[HQwaQ] = [i00w] 7 [Tr(Bm(w) A Rm(w)) = Tr(F(H) A F(H))] = 0. (5.3)

Next, we observe that stationary points of the Anomaly flow satisfy the Hull-Strominger system
(3.1), (3.2), (3.3). We hope that the Anomaly flow will find solutions to the Hull-Strominger system
inside the conformally balanced class of the initial metric. More generally, we would like to use
the Anomaly flow to study non-Ké&hler Calabi-Yau manifolds with balanced metrics. From the
point of view of geometric flows in complex geometry, the Anomaly flow is interesting even when
F(H) =0 and o/ = 0, as it allows metrics with nonzero torsion. For other flows in non-Kéhler

complex geometry, see e.g. [98, 99, 51, 110, 101, 23, 6, 124, 94].

Though it is given as a flow of (2,2) forms, in [89] we show that the Anomaly flow is a well-
defined flow of the metric w and the flow exists for a short-time, given a condition on the curvature
of the initial metric. For simplicity, this condition can be taken to be |/ Rm(w)| < 1 for purpose of
this thesis. In fact, for several examples to be discussed in subsequent chapters, we will show that

|o/ Rm(w)| < 1 is preserved along the Anomaly flow.

To show that the Anomaly flow is well-defined, we can give an explicit expression for the
evolution of the metric. For simplicity, we will take the metric on the gauge bundle to be already

known and study the flow

(|Qww?) = 00w — o (TtRm A Rm — ®(t))

w(0) = wo, (5.4)

where

d(]|Q|wow) = 0, (5.5)

and ®(¢) is a given closed (2,2)-form in the characteristic class cha(X), evolving with time. We

then have the following expression for the evolution of the metric.

Theorem 14. (Phong-Picard-Zhang [84]) If the initial metric wy is conformally balanced, then the
Anomaly flow (5.4) can also be expressed as

1

Orgpq = W — qu + gaﬁgSFTBSqTa,aﬁ — O/g‘gF(R[ﬁsaﬁqu]ﬁa — (bﬁsffq) , (5.6)
w
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where R,;j is the Ricci tensor and Ty,; is the torsion tensor, as defined in (2.59) and (2.18). The
brackets [, | denote anti-symmetrization separately in each of the two sets of barred and unbarred

ndices.

Remark: Recall that by the definition (2.59) of R,;j, we have
Rl_cj = *gpqapaqgkj + gpqugaqg,;Tapggj. (57)

We see that when o/ = 0, the Anomaly flow is parabolic. Furthermore, when |/ Rm/| is small, the
symbol of the linearization of the right-hand side of (5.6) is invertible. Thus the flow exists for a

short-time in this case.

Remark: With this formula for the evolution of the metric, we see that the Anomaly flow is a
non-Kéhler generalization of the Kéahler-Ricci flow [15] with higher order corrections proportional
to o/. From the point of view of analysis, the study of this flow is challenging due to the quadratic
curvature terms. Indeed, as an equation for the metric, the Anomaly flow is a fully nonlinear
system. For other flows with quadratic curvature terms, see e.g. [36, 61, 81, 52, 53, 54] and

references therein.

Proof of Theorem 1/: It is convenient to denote the right hand side of the Anomaly flow by a (2, 2)

form W,
U = i00w — o Tr(Rm A Rm — ®(t)). (5.8)

As usual, we denote its coefficients by W4, and also introduce the notation W;,, which can be

viewed as the coefficients of a (1, 1)-form,
]. q —_r S =D ST
= @ D Upargd2? NdZT N2 NAFP, gy = g7 Uparg. (5.9)

We rewrite the Anomaly flow (5.4) as

1
(O¢log ||| ww + 20iw) ANw = o] . (5.10)
Since
1 1 %
O log || = —§8t log(det w) = —59] OGpj» (5.11)
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we have
1 1, .z
U = ——(¢7*Og5;) w? + 20,0 A w. 5.12
||Q||w 2(9 tgk])w + 20w Aw ( )
A straightforward computation gives
w? = (iggpd2? A dz9) A (igp,dz® A dz°)
1
= 4{gqsgpr — 9qr9ps T Ipr9qs — gqrgps}dzs Ndz" NdzZT N dZP, (5.13)
and
1
ﬁtw Nw = 4{gq58tgpr — gpsatqu + gmﬁtgqs — gqr&ggps}dzs ANdz" ANdz? A dZP. (514)
Therefore, contracting (5.12)
Lﬁ?\p__ _ ! %80 V(as. — 3a- 30
1 g “¥pgrs = 5 (97" 091;)(gps — 39ps + Gps — 39ps)
w
—1—2(3159;53 — Gps (gjkatg]}j) + atgi)s - 36159]78)' (515)
Cancellation occurs, and we find
Orgps = #grq\P— rs = #\I/— (5.16)
ool T 2l '

It remains to work out the components W;gr, of (5.8) more explicitly. The components of 100w

were already computed in (2.82).
(100w)gjom = Rijom — Rimty T Ramk; — Rijim + 97 TrmiToge- (5.17)
Applying Proposition 2 in Chapter 2 on the torsion and Ricci curvatures of conformally balanced
metrics gives
9" (100w)kjom = Rij = 979" Tomi T i (5.18)
We collect the resulting formulas in a lemma:
Lemma 7. Let the (2,2)-form U be defined by (5.8) and its components Vperq, V5q by (5.9). Then
Vit = Rty — Bijim + Bijim — Rimiy + 9% TrjmTuiz — @ (R *8Re o — Prmi;)
Ui = =R + (TT); — o 9™ (R 8 R 0 — ni) (5.19)

where the brackets [, | denote anti-symmetrization separately in each of the two sets of barred and

unbarred indices and (TT),;:]- = g“”fgmeTijTsfk.

Combining the formula (5.16) for the Anomaly flow, and using the fact that the flow preserves

the conformally balanced condition, we obtain Theorem 14.
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5.2 Evolution equations

5.2.1 Flow of the curvature tensor

The general formula for the flow of the curvature tensor of Chern unitary connections under a flow

of metrics is the following
O Ry = —ViVi(d" ga) = =" Vi Vigsw. (5.20)

To apply this formula to the case of the Anomaly flow, where 0;g5, is given by Theorem 14, we
need to work out the covariant derivatives of the curvature tensor for Hermitian metrics. This is

done in the following lemma:

Lemma 8. Let w be any Hermitian metric (not necessarily conformally balanced). Then we have

the following identities

ViViRssin = VsVaRpun + V(T s Ryran) + Vs (T7 55 Rrjan)
—Rps" Rijun + Bis" i Rynpn — Rigp” Rajin + Ris"xRyjin-
ViViRan = ARpjpy + Vi(T s Rpn) + V(T 55 Rejpn)
— R Rijpn + Ri," i R wpx — Rigi "R jan + Ri" AR’ jur)
ViViR = ARj; + Vi(T"R°) + V'V(TF;Y,;R@') — Ri"Rgj + Ry, R (5.21)
To clarify the notation: we are writing A = ngVjV,; for the ‘rough’ Laplacian and A =

g’ EV,;Vj for its conjugate. While A and A agree when acting on functions, they differ by curvature

terms when acting on tensors.
Proof. The proof is a straightforward application of the Bianchi identity, beginning with
VIEVJ'R’YS;Z/\ = vl}(vsR’yjﬂA + Trszfyrﬂ)\) (5.22)

and applying it again, after commuting the covariant derivatives Vi and V. Q.E.D.
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We return now to the Anomaly flow of conformally balanced metrics. First, we write

Oly;"s = —VkVJ(QHlewg”“%A)
N 2|ygluw9 ViV Vk(Q”éHw)Vj(gp“\I’M) Wz\\(lznw)v (9" ¥ pn)
_v]_“vj(2||§12\w)gpu X
1 1
- _2||9ng VRVt e TeViVi + grgr TVl
+2||slz| (5B — TyT;) 9’ (5.23)

where we used (iii) in Proposition 1 Chapter 2 to get the last equality.

We concentrate on the first term, which can be written in the following way, using Lemma 7,

= i I 1 i ST «
gpuvl_gng,m gﬂﬂvﬁijm—k%Qngwg O/VEV]'(R[[LS ﬁRmBa)

1 1
2[|€2., 2(|€le

—2||Q”wg VkV (TT) ,\+oz<I>,M) (5.24)

The terms in the second line are lower order terms that we shall leave as they are for the moment,
and just collect them at the end. The first term on the right hand side can be rewritten as follows,

using Lemma 8,

1

p R Stor ARk sRsrp :Y RT‘
QHQHw ViVt L A+2”9Hw Vi(T"s A+ VI(T7 5 Ry )

—R{"Rii’» + Ri,"jR° "\ — Ri,P"R%jrx + R "R | . (5.25)

It remains only to work out the contribution of the second term on the right hand side,

S0 VRV (Rias sFon ) (5.20)

a/gpﬂgsf O/gpﬂgsf
2[[€]es 2([2les

Again the second term on the right hand side contains only lower order terms, which we leave as

2(ViViRus®8) Ry o + (ViRpus® sVl a + ViRpus“ sV iRy a).

they are and collect only at the end. Using Lemma 8, the first term can be rewritten as,

N a/gpﬁgsf -
2(VEVjR[ﬂs B)RF)\]BQ = WQR[HMVSVMRE]‘SB (5.27)

O/gpﬁgsf
+m23[f[xﬁ ’ [Vk(TTS]ijnsﬂ) + V(T i Rijss)
_RES]IJ]RRRJ‘S,B + Rig" i Rywss

Rks](5 RM]]Hﬁ + Rks] 5Ru]jén:|
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where we have again anti-symmetrized in the unbarred indices s and A, and separately in the
barred indices iz and 7. Whenever there are many indices in the same row and whenever a more
explicit designation may be helpful, we have indicated the indices to be anti-symmetrized, either

by a symbol [ on the left or a symbol | on the right of the relevant index.

We obtain in this way the following theorem:

Theorem 15. Consider the Anomaly flow (5.4) with an initial metric wy which is conformally

balanced. Then the curvature of the metric flows according to the following equation

1
8tREjp’\ 2||QH (ARkJ At 2a gpugsrR[?"AﬂOév v#]RkJ )
1 - 1 1 _
b TVUP 4+~ T3V U 4 ( Ry, — TyTh) 0P,
22, " 2|2, 7 2||QH R
- 9PVEV(TT)px + &' Ppy)
2[|€2][, g g g
1 [ o
Vi ( s Rsrp)\) + V’Y(TrffRF'p)\)
2HQHw k J kT
—Ri"Ryjfx + Ry "iR°"x — Rp,""R® jrx + Ry “AR®;” n]
O/gpﬂgsf “ o
+W(VjR[gs QVERFA]BO{ + V;;R[ﬁs ,3VjR,:>\]'8a)
a/gpﬁgsf ,35 . -
+W2R[ﬂ)\ V}E(T s}jRﬂ]rS,B) + vs] (T ﬂ}vafjgﬁ)
—Rign" Rrjss + Ry i Rpusp — Risjs™ Rijjrs + Ry s Ry jdfe] (5.28)
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5.2.2 Flow of the Ricci curvature

The flow of the Riemann curvature tensor implies immediately that of the Ricci curvature,

L
219w
1 T A

1
F—— TV, 0,
2ef, F T T e,

1
— = ViV (T + /0
2||QHw J(| | )

ORy = ARg; + 20/ gV g RipaP oV V5 Ry
1

— TiVEUM o (
g 2[1]w

Rk:] T‘]Tl_c)\I’A/\

1 - s 5 (AT R K s
+m [Vk(T i R°) + V(T" 1 Rrj) — Ri"Ryj + R"jR n}
a/g)\ﬁgsf

M (VJ'R[ﬂsaﬂvI}RM]Ba + V,;R[ﬂsaﬁijm}Ba)

_|_

O/g)\ﬂgsf 5 § _
+W2Rm)‘ﬂ Vi(T" i Bass) + Vo (T gilirisp)

_Rl}s]ﬂ]RRRjS,B + RES]HjRﬂ]H(Sﬁ Rks]§ RM]]HB + Rk:s] 5Ru]]55:| (529)

with |T'|? = gjl;g”gm Trmi T

5.2.3 Flow of the scalar curvature
If we write R = ngR,;j, we obtain
OR = gjk(?tR,;j - gjm@gmngkR,;j. (5.30)

Applying the preceding formula for the flow atR,;j of the Ricci curvature, we find

1
= AR + 20/ g A
8tR 2”9”0_,( R+ a g R[r)\ o M]R )

+2"Q||W(ijj\11)‘>\ Tka\IIAA + (5 R—Tj:f’ﬂ')\px)

1
2[|€2le

1
2[|€2le
a/gAﬂgsF
2(|€l
a/g)\ﬁgsf
2|2l

2||Q”w
A(TP + a'@*y) —

qu\l’*
2IIQHw m

n (vg<Trszsr> ; vwf%—cRm)

+ (Vi Rias® 5V Rex®a + Vi Rips sV  Rey®a)
+ 2R\ {Vj (T7 5 Rapys) + Vsl (T7 5 Ryj56)

—R! 310" Rejsp + R Rz — B 5" Rijrs + B 9" 3R, |- (5.31)
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5.2.4 Flow of the torsion tensor
We differentiate the coefficients T}, of the torsion tensor,

OTpiq = 0jdpg — Oqp;
1 1

- 8j(m‘1’ﬁq) - aq(m‘l’ﬁj)
— 2||(12|w(v]'\1]pq = Vs +T"qYpm) — 2|(12HW(T]-\IJM — T, V5). (5.32)
Once again, we concentrate on the leading term, which is
1 1 . ) ) )
aar, Vi~ Va¥m) = grar(Val=Rpg + (TT)pg) = Vo(=Ryj + (TT)5y)
B 2||flzrwo‘lgsrvﬂR[ﬁs“ﬂRmﬁa ~ Dprg)
a9 VaBins" 58 0) = Ppur). (5.33)

Although this is not apparent at first sight, the key diffusion term ATj;, can be extracted from the

right hand side. The basic identity in this case is the following:

Lemma 9. Let w be any Hermitian metric (not necessarily conformally balanced). Then
(AT)pjq = VoRp; = ViRaq + T\ R gy — T jpR g, (5.34)
Proof. We compute the components of the left hand side, using the Bianchi identities,
(AT)pjq = g¥VaViTyg
= 9M'Va(Ragpj — Rpjpa)
= ¢"(VeRunpj — ViR + T orRirpj — T" jaRiirq)-

= VoRp; = ViRaq+ T pRpj — T R g (5.35)
This proves the lemma.

Comparing this identity with the previous expression that we derived for 9;1};;4, we obtain the

following theorem:
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Theorem 16. Consider the Anomaly flow (5.4) with an initial metric wy which is conformally

balanced. Then the flow of the torsion T = i0w is given by

1 ST o ST o
atTf)jq = QHQHOJ ATﬁjq - O/g (vj(R[ﬁs ﬂRFQ]ﬁa - (I)ﬁsfq) + O/g VII(R[ﬁs BRF]'}BOZ - cI)ﬁst))
1 m _ _
+2||QH (T qupﬁm - lellpq + Tq\ppj + Vj (TT)ﬁq - vq(TT)ﬁJ)
1
———(T" 2Ry — T" xR 50). (5.36)
QHQHw q P J Prq

5.3 Anomaly flow with zero slope parameter

Let X be a compact threefold with non-vanishing holomorphic (3,0) form Q. Suppose X admits a

conformally balanced metric wg. We consider the flow
(| ww?) = i0dw. (5.37)

We recall the definition of the second Bott-Chern class

~ {closed (2,2) forms}
- {id0B : p € QLY(X)}

The balanced cone of X is the subset of HJQB’Z,(X ) of classes which can be represented by closed

(5.38)

2,2
Hye(X)

positive (2,2) forms.
Given an initial conformally balanced metric wg, we consider the class 7 € Hé’é(X ) defined by
2 2,2
7 = [[|Qlwows] € Hpe (X). (5.39)

We say that 7 is the balanced class of wg. Then the evolving metric w stays in the balanced class

of the initial metric,

O[] ww?] = [i00w] = 0. (5.40)
In other words, along the flow we have
1Qflow? € 7. (5.41)

In Chapter 2 §2.2.4, we showed that a metric satisfying 100w = 0 and d(||Q||,w?) = 0 must satisfy

the equation

g*0;0Rlog 12112 = IT?, |T1* = g% ¢° g™ Trm; Tz (5.42)
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From this equation it follows that log ||2||2 is constant and |T'|? is zero. This implies
dw =0, Ry; =0;0;log w? =0. (5.43)

Thus if the Anomaly flow (5.37) converges, it provides a deformation path in the space of confor-

mally balanced metrics to a Kéhler metric.

5.3.0.1 Remark

We cannot expect the flow with o/ = 0 on a Kahler threefold X to converge starting from an

arbitrary balanced metric wp. Indeed, let
2 2,2
7 = [[|Q|wowp] € HBC(X)- (5.44)

If the flow converged to a stationary solution we, then by applying (5.43) to d(||Q|w. w?%,) = 0, we
see that |||, is a constant and
@ = (@) Pwoo (5.45)
is a Kéhler metric such that
[?] = T. (5.46)
By the example of Fu-Xiao [37], which builds on work by Tosatti [105], there exists classes 7 €
HJQB’%(X ) on certain threefolds X for which (5.46) does not hold for any Kéhler metric o. Fu-Xiao

propose the problem of classifying which balanced classes 7 come from Kahler classes. It would be

interesting to understand the behavior of the Anomaly flow in this case.

Our main result on the Anomaly flow with o/ = 0 is the following long-time existence criterion.

Theorem 17. (Phong-Picard-Zhang [84]) Assume that o/ = 0, and that the Anomaly flow (5.37)
exists on an interval [0,T) for some T > 0. If infycpo )| Qlw > 0 (or equivalently Wi(t) < Cw?(0)),
and if

supx (0.0 ([RmlZ, + [DT + |T1;) < oo (5.47)

then the flow can be continued to an interval [0,T + €) for some € > 0. In particular, the flow
exists for all time, unless there is a time T > 0 and a sequence (zj,t;), with t; — T, with either

19202, 5) ke = 0, or

(IRm[Z + DT + |TI5) (=5, t5) — oo (5.48)

88



CHAPTER 5. ANOMALY FLOW

5.3.1 Flow of the curvature and the torsion

In this section, we give the evolution equations for various quantities under the Anomaly flow
O1(||92]|ww?) = i00w. These formulas were obtained in previous sections, and now we simply need

to set o/ = 0. The flow of the metric is given by

1

875-9?(1 = Snon | — Rﬁq + gsrngTrqu (549)
2[|]w

This expression can be compared with the flow of Hermitian metrics considered in [98, 99]. We
note that the quadratic torsion term is different, and furthermore the dilaton ||Q||! introduces a
term proportional to the determinant of the metric. Both these flows may be useful in studying

different aspects of non-Kéahler complex geometry.

We will use as before the notation Wy, for the right-hand side of the flow.
Wy = —Rpq + 979" Trmg Loty (5.50)

The flows of the curvature tensors are given by

1 1 _
i = gpap, A~ g VRV T e
_ 1 _
+72IIQHW (Tkvj +T;Vi + (iRl}j - Tka))\prA
1 T S Y (T
+W [Vk(T i ReP3) + V(T 55 Rii” )
—Ri" R + R;;s“sznp A — R "Ry + Ry AR 7 n]
1
OFiry 2l sy = sy Vvl
vy (769 + T+ (G Rey = T ) (<R + TP
2|muw[ SJRS + V(T kafﬂ—R%“Rﬁj*kasz“]
1
QR = ——AR-— T]? — Rik
t 211% ATy
ZHQH ( TVF + T,V + (R—TjTj)>(—R+\T]2)
2) 4+ V(T R,;)) (5.51)
2||Q|!w( il
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and the flow of the torsion is given by

1 1 \ R
9 Tpjq WATM - W(TrqAR rpi — T AR rpq)
w w
1 — —
+W(Tm]qq]ﬁm - jjj‘llﬁq + Tq\Iijj + VJ(TT)ﬁq — Vq(TT);B]) (552)
w

The flow of the dilaton |||, is given by

1
AUl = (R~ |TI2). (5.53)

5.3.2 Estimates for derivatives of curvature and torsion

The goal in this section is to prove

Theorem 18. (Phong-Picard-Zhang [84]) Assume that o/ = 0. Suppose that A > 0 and w(t) is a
solution to the Anomaly flow (5.37), with t € [0, %] Then, for all k € N, there exists a constant

C depending on a uniform lower bound of |||, such that, if

1
|Rm|, + |DT|o + |T|2 < A, forallz€ M and t € [0, Z]’ (5.54)
then,
CkA CkA

for all z€ M and t € (0, %].

This theorem is an analog for the Anomaly flow of Shi’s estimates for the Ricci flow [96, 64].

We shall use D to denote the derivative when we do not distinguish between V and V. For

example, | DT| would include both |[VT| and |VT|, and

IDFTP? = > [VIVIT) (5.56)
i+j=k
The proof of Theorem 18 is by induction on k. The idea is find a suitable test function Gg(z,t)

for each k, similar to the Ricci flow, and apply the maximum principle.

We will first prove the estimate (5.55) for £ = 1 case. Then, we assume that, for any 0 < j <
k—1,

, C;A , C;A
J J Jj+1 J
| D' Rm(z,t)|, < PR | D7 T (2, )| < e (5.57)
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for all z € M and t € (0, %] and show the estimate also holds for j = k.

We already have the flows of the curvature and of the torsion, as given above. To prove the
theorem, we shall also need the flows of their covariant derivatives. They are given in the following

lemmas.

Lemma 10. Under the induction assumption (5.57) and |T|?> < A, we have

1

&|D*Rm|? < -~
' 2[|€|e

1 3
{2AR|DkRm]2 — Z\D’““Rm|2 (5.58)

+COA? (\Dk+1Rm| + \Dk+2T|> .| D* Rm|
+CA (|DkRmy + ka+1Ty> .| D* Rm|

+C A%t - |D*Rm| + CA?’t*’“}
where we write Ag = A + A and A = g%V, V;.

Proof. First, we observe that the flow of the curvature tensor can be expressed as

1 1 _ _ _ _
ORm = s {gARRm+VV(T*T)+V(T*Rm)+V(T*Rm) (5.59)

+Rm*Rm+(?T—T*T)*WJFT*V\IHFT*?\IJ}.

To clarify notation: if ¥ and F' are tensors, we write F x F' for any linear combination of products

of the tensors £ and F' formed by contractions on Ej,..;, and F}, ...;, using the metric g.

Let the terms in the large bracket be denoted by H, that is

1
Oy Rm = H. (5.60)
2(|2],
In general, the Chern unitary connection of a Hermitian metric gz; evolves by
QAL =0, QAL = §"Vi(Digpm). (5.61)
This implies

m Z . . . .

O(V"V Rm) = VVEHORm) + > D N VIV Rm o« VIV (9yg) (5.62)

i+5>0 =0 j=0
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Using the evolution equation of Rm, we get

m £
O (V"V'Rm) = YN VIV Rm « VIV (0,g) (5.63)
i=1 j=1

m £
1 my—¥{ m—iv7l—7j ivj 1
+2||Q|| V™"V H + E E E VI H « VIV <2HQ|| >
w i+7>0i=0 j=0 w

We compute the second term,
myx—7{ 1 myx—74 A/ AvAw myx7{+1
V"V'H = §V V*ARRm + V™'VVNV(T «T) + V™V (T * Rm)
+VVIY(T * Rm) + V™V (Rm « Rm) + V"V (T « )

+VTVYO T T) + V"V (VT + T) + VYT + V) (5.64)

By the commutation identity,

m £
V™VIARRm = Ag(V"V'Rm)+> Y VIV Rm« V"V I Rm (5.65)
i=0 j=0
+D D VIVIT« VIV R 4+ Y N O VIVIT « VIV R
i=0 j=0 i=0 j=0
we obtain
m
_ 1 1 _ . .
0i(V"V'Rm) = ST {§AR(VmV€Rm) +3 N VIV Rm o« VTV Rm
w i=0 j=0

m L

+Y D VIVIT« (vm*iﬁ”HRm + iy Rm) +VVIVY(T  T)
i=0 j=0

+VTVEIYT « Rm) + V™VV(T * Rm) + V™V (Rm * Rm)

PV« T) + VIVET K T x T) + VPVAVT # T)}

m /
+ Z Z Z VIV Rm o« VIV (04g)

i+j>0 i=0 j=0

4
+ NN VNI H < VIV <2Hf12|| > (5.66)

i+5>0 i=0 j=0

Next we compute
o|IV™VERM2 < (9,V™V Rm, V™V Rm) + (V"V*Rm, 8;V"V*Rm) (5.67)

—+

IV™VERm? - |0
2(|2],

92



CHAPTER 5. ANOMALY FLOW

We also compute

Ag|V™VRm|? = (ArRV™V'Rm, V"V'Rm) + (V"V Rm, AgV"VRm)  (5.68)
+2|V IV Rm|? 4 2| VY™V Rm?
= (AgV™V'Rm, V"V Rm) 4+ (V"V*Rm, AgV™V Rm)
+2|V IV Rm|? 4 2|V VI Rm)?

+2 (vaWRmF - |vmvf+1Rm|2)

We can estimate the last term by a commutation identity.

m—1
VV™V'Rm —V"VV'Rm = > V'Rmx*V" '"'V'Rm (5.69)
1=0
It follows that
VYV RmP? — VTV R (5.70)
m—1 m—1
> —CIV™"V*'Rm|- > [V Rm« V™ 'V Rm| - C Y [V Rm o« V"IV Rm|?
=0 =0
m—1 ) ' m—1 ' '
> _Cl|vm@f+1Rm| . Z ‘D'LRm| . |Dm+€flszm| _C Z ’Dsz|2 . |Dm+Zflszm|2
i=0 i=0
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Putting all the computation together, we arrive at

O |V™VERm|?
1 1 _ _ _
< 29 {2ARvmv€Rm\2 — |[VHIVERm? — V™V Rm)?
m—1 ) A m—1 ‘ A
+C VTV Rm| - > " [D'Rm| - D™ Rm| 4+ C Y [D'Rm)? - | D™ R ?
=0 =0
+CIVV Rm| - | YO VIV Rm| - [V T R + [V SH(T 1)
i=0 j=0
+Y ) VIV Rm| - VTN (T A T)| + [VPVHT « Rm)|
i=0 j=0

m £
+ S IVIIT] - (VT R 4 [V R )

i=0 j=0
m -1 o . .
HVTHIVHT « Rm)| 4+ ) " |[VIVIRm| - [V V(T « Rm)|
i=0 j=0

+|VVY(Rm « Rm)| 4 V"V T )| 4 |[VV(E « T « T)| 4 [VVH(VE * T)|

m L
£ Y S v ()|

i+5>0 i=0 j=0

m L
+ >, 2 D VTV Rm|- |vivj<atg>|”

i+5>0 =0 j=0

c =l (2
b [V Rm? - [T (5.71)
2[|€|e

where we used commutating identities for terms V™V!VV(T * T) and V"VV(T * Rm) in the
evolution equation 9;V*V/Rm. Next, we use the non-standard notation D introduced at the

beginning of this section. Note that, for a tensor F,

|VIVIE| < |D'E). (5.72)
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Let kK = m + £. We have

atIVm?ZRmP
1 1 — _ _
< 2||Q|| {QAR|vmv€Rm|2 _ |vm+1v€Rm|2 _ |vmv€+1Rm|2
k-1 , k=1 .
+Cl‘vm@€+1Rm’ . Z |D2Rm’ . |Dk—1—sz| + CZ |D1Rm‘2 . ‘Dk—l—sz|2
=0 i=0
+C|vaZRm| . Z |D2Rm| . ’Dk—sz| + Z |D1T’ . |Dk+1—sz|
=0 i=0
k—1 ‘ ‘
+HDMHT « T)| + Y |D'Rm| - [DF(T + T)|
=0
k—1 A ‘
HDFUT « Rm)| + |DM*H(T « Rm)| + > |D'Rm| - |D¥17/(T « Rm))|
=0

+|D*(Rm « Rm)| + |D¥TY(T % U)| + |D*(U « T « T)| + |D¥(VE « T)|

k k
—i 4 1 —1 7
+> |D*H]| - |D <2HQ”)I+ZID’“ Rm|-|D <5t9)|”
i=1 @ i=1
C

+——— V"V Rm|? - |V (5.73)
2[|2e
Recall that
ID*Rm* = > [V"V'Rm|? (5.74)
m+f=k
VPV Rm| < |DMTRm|,  |[V™VRm| < |DFRm| (5.75)
and we also have
ID"'Rm? = Y |VPVRm[*= ) |[V"V/Rm|’ + |V Rm|?
m-+q=k+1 m+4q—1=k,q>1
— Z |vmvf+1Rm|2+|vk+lRm‘2
m-+f=k,m>0,{>0
< D) VOV RmP+ Y VPV Rm? (5.76)
m—+A=k m+L=k
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Using these inequalities, we get

8t]DkRm|2
< 1 1A]RyD’U%P—\D"”lRmy?
2[1Qlw | 2
k—1 ‘ ' k—1 ' A
+Cy[D¥T Rm| - " |D'Rm)| - DM Rm| + C Y | D'Rm)|? - | DFT1 Rm|?
1=0 =0
k . . k . .
+C|D¥Rm| - | Y |D'Rm| - |[D¥"'Rm| + Y |D'T| - |D* 7 R
=0 =0
+HDM(T «T)| + > [D'Rm| - [D¥ (T« T))|
=0
k—1 ‘ '
+HDMYT « Rm)| + [DMN(T « Rm)| + > [D'Rm| - |[D¥"17(T « Rm)]
=0

+|D*(Rm « Rm)| + |D¥TY(T « U)| 4 |D*(U « T « T)| + |D¥(VE « T)|

k k
— 7 1 —1 )
+3°ID¥H|-|D <2HQ\>’+Z‘Dk Rm|-|D (8tg)|”
i=1 w i=1

C  hkp,op2
D | .
+2||Q||w| Rm|* - |V (5.77)
We estimate the terms on right hand side one by one. Recall that we have
; CA ‘
|D'Rm| < PR 0<j<k-1 (5.78)
, CA
J+1 ; _
DT < SR 0<j<k-l (5.79)
IT]? < CA; (5.80)

and the unknown terms are | D**1Rm|, |D*¥ Rm|, |D*+2T| and |D¥*+1T.

e Estimate for |D*t'Rm|- %"} |DIRm| - |D*1=1Rm| :

k—1 k—1
|D*" ' Rm| - > |D'Rm| - D' ""Rm| < |D*'Rm|-)
=0 =0

CA CA

7 i (5.81)

DM Rm| - CA2t "5

IN

< G|D*Rm|? + C(h) A3t7F

where 6 is a small positive number such that C10 < ; . To obtain the last inequality, we used

AN

Cauchy-Schwarz inequality and the fact that At < 1.
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e Estimate for Zfz_ol |D'Rm/|? - |D¥1""Rm|? :

k—1 k—1 2 2

, - CA CA

i 2 k—1—1i 2
> " |D'Rm|* - [D¥ ' Rm[ < E(::z/?) <M> (5.82)
=0 =0

< oAt < opdh

e Estimate for Zf:o |D'Rm| - |D*~'Rm)| :

k k—1
> ID'Rm| - |D*"Rm| = 2|D*Rm|-|Rm|+ > |D'Rm|-|D*'Rm| (5.83)
=0 i=1

< CA|D*Rm|+ CA%t 2

e Estimate for >-F | D'T| - |D*+1=Rm| :

k k
> ID'T| - DM Rm| = |T|- D" Rm| + |DT| - |[D¥Rm| + > |D'T| - [D*' =" Rm|
=0 =2

< CA2|D*'Rm|+ CA|D*Rm| + CA2¢ % (5.84)

e Estimate for |[D*2(T + T)| :

k+2
DT «T)] < > |D'T|- |DF?IT| (5.85)
=0

k
= 27| |D*"*T| +2|DT| - DM+ Y |D'T| - | DFH27 T
=2
< CAz |DFF2T| + CA|DMT| + CA2 L2

e Estimate for Zf:_ol |DIRm| - |D¥={(T = T)| :

k—1
> |D'Rm| - |D¥ T % T)] (5.86)
=0
k—1 k—1 k—i
< 2> |D'Rml-|T|-|D*'T|+ Y > " |D'Rm| - |D'T|- | DT
i=0 =0 j=1
< CA2t 3
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e Estimate for |D¥TY(T x Rm)| :
|DE*Y(T « Rm)| < |T|-|D*"*Rm| +|DT| - |D*Rm| + |D*1T| - |Rm| (5.87)
k

+3 " |D'T| - |[DM T R
=2

< CAz [D¥"'Rm|+ CA|D¥Rm| + CA|D*T| + CA2¢3

e Estimate |D*1(T « Rm)]| :

|D*Y(T % Rm)| < C Az [D¥'Rm| + CA|D¥ Rm| + CA|DMT| + CA%t2 (5.88)

e Estimate for >-¥ ) [D'Rm| - |D*='=(T * Rm)| :

k—1
|D'Rm| - |D*=(T % Rm))| (5.89)
i=0
k—1 A ‘ k—1k—1—1 A ) o
< |D'Rm| - |T|-|D*"""Rm|+>_ > |D'Rm|-|D'T| - |D*"'~"~I Rm|
i=0 i=0 j=1
< CA%t:
e Estimate for |D*(Rm x Rm)| :
|D*(Rm = Rm)| < 2|Rm|-|D*Rm|+ Y |D'Rm|-|D""'Rm| (5.90)
=1

< CA|D*Rm|+CA2t 2

e Estimate for [D¥+1(T % )| :
Recall that Uy, = —Rpy + 95 ™ Thisy Tinip, we have
|IDFY (@« T)| < |DMYRm«T)| + | DM NUT « T T)| (5.91)

The first term is the same as (5.87). We only need to estimate the second term.

]Dk'H(T x T *T)|

IN

|D*IT| T2 + > |DPT| - | DT - |T| (5.92)
p+q=k+1;p,q>0
+ > |DPT| - |DT| - |D"T|

p+q+r=k+1;p,q,r>0
(k—1) (k—2)

CA|DMIT|+ CAS 2 +CAPt 2

IN

CA|DFIT| + CA2¢ 5

IN
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It follows that

IDMTY(W«T)| < CA2 [D*'Rm|+ CA(|D*Rm| + |D*HT|) + CA2 ¢~ 2 (5.93)

e Estimate for [D¥(U T+ T)| :
|IDF(U T «T)| < |D*(Rm*TxT)|+ |D¥(T+«T «T%T)| (5.94)
We use the same trick as above to estimate these two terms. For the first term, we have

ID*(Rm«T«T)| < |D*Rm|-|TZ2+ > |D’Rm|-|DT|-|T| (5.95)
p+q=k;q>0
+ > |D’Rm|-|DT|-|D"T|

p+q+r=Fk;q,r>0
-1

< CA|D*Rm|+ CA "5 +CcA3 %
< CA|D*Rm|+ CA%t 2
For the second term, we have
IDMT«T+«T+T)| < 4D*T|-|T¥+ Y [D°T|-|DT|-|T|2, (5.96)
p+q=Fk;p,q>0
+ > |DPT| - |DUT| - |D"T| - [Tl
p+q+r=k;p,q,r>0
+ > |DPT| - |DIT| - |D"T| - |D°T|
p+q+r+s=k;p,q,r,s>0
< CAStT 4 C0AB T 4 CATE T 4 CAY T
< CA%t:
Thus, we have
ID*(W T +T)] < CA|D*Rm|+CA%t 3. (5.97)
e Estimate for [D¥(VU « T)| :
|IDE(VU «T)| < |D¥(VRm*T)|+|D¥(V(T *T)*T)| (5.98)
k
< |D*'Rm|-|T|+ |D*Rm|-|DT| + > |D*'~"Rm| - |D'T|
=2
k . .
+DMHT )| - T+ ) [DM T« T)| - |D'T)|
=1
< CA2|D*'Rm|+ CA|D*Rm|+ CA|DMT| + CA% ¢ %
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e Estimate for Zle |Dk_iH’ ) |Di <2||§12||w> K

Recall that

1 _ L _
H = iARRm +VV(T+T)+ V(T Rm)+ V(T * Rm) (5.99)

+Rm+xRm+ (VT —T*T)« VU +T+« VU +TxVU

and we also compute, for any m,

1 1 1
v < > = vnly ( ) =yl < T> (5.100)
2[|2]e 2(|€2le 2/|2le

1 1
— _ym-1 T — m—lT
v @w@* ol

1 m
= VmIT s« 7971
30T 2

where T9=1 = T« T % - - - % T with (j — 1) factors. Again keep in mind that the unknown terms are

|D*L Rm|, |D¥ Rm|,|D¥*2T| and |D*+1T|. Notice that these terms only appear for i = 1,2 in the

summation.
a . (1 1 1
D10 (g )| = 10 1D (e ) 11021 1% (g )
2 2, 2l 20l
k ' . 1
+> DM H| - D ( ) \ (5.101)
2 2]
Using (5.99) and (5.100), we can estimate the terms on the right hand side one by one and obtain
k
S |DkiH| D <1) | (5.102)
~ 2[[€]es

< CAZ|DM'Rm| + CA(|D*Rm| + |DMT|) + CA2 ¢35
e Estimate for Zle |D*=Rm| - |D*(8:g)| :

W@M=|ng|y—2|(mw)uﬁm (5.109)

By the definition of ¥ and the computation (5.100), we know that the only unknown term appeared

in the summation is when j = ¢ = k. Thus, we arrive the following estimate

k
ST ID*Rm| - |D'(9ig)| < CA|D*Rm|+CA%t 3 (5.104)
=1
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e Estimate for the last term |D*Rm/|? - || :
|DERm|? - |¥| < CA|D¥Rm/?. (5.105)
Finally, putting all the above estimates together, we obtain the lemma. Q.E.D.

Following the same strategy, we can also prove the following lemma on estimates for the deriva-

tives of the torsion.

Lemma 11. Under the same assumption as in Lemma 10, we have

1 3
— 29 4

+CO A2 (\Dk+2T| + \Dk+1Rm|) (| DR

Oy | DFFLT|? | Dk 27 (5.106)

1
(Lot -

+COA (|Dk+1T| + |D’mey) (| DR

FOA2 S VR 4 CA%"“}.
Now we return to the proof of Theorem 18:

We first prove the estimate (5.55) for the case k = 1. To obtain the desired estimate, we apply

the maximum principle to the function
Gi(z,t) =t (|DRm|* + |D*T|?) + A (|Rm|* + |[DT|?) (5.107)

Using Lemma 10 and Lemma 11 with k¥ = 1, we have

9, (prnf+ (D717 108
1 } 2 212 _§ 9 9 312
= 20l {2AR (IDRm|* +|D*T ) — 7 (ID*Rm[* + |D°T?)
+CAx (|D*Rm| +|D°T)) - (|DRm| + |D*T))
+CA (IDRm| + |D*T|)? + CA2t~2 (IDRm| + | DT)) +CA3t_1}
# } 2 212 _1 9 5 4o
< g 1ad% (DRmP +[D*TF) = 5 (1D*Rmf +|D*TF?)

+CA (IDRm? + |D*T|?) + CA® t‘l}

where we used the Cauchy-Schwarz inequality in the last inequality.
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Recall the evolution equation

1
S -
2[|€2[.,

+CA3(|DRm| + |DT)) + CA3}. (5.100)

1 1
(| DT + |Rm|?) {52=(DTP + |Rmf?) = S (DT + |DRm?)

It follows that

1
XG1 < 1ol {ARGl —t (|D*Rm|* + |D*T|*) — A (|D*T|> + |DRm|?)
+CAt(IDRm|?* + |D*T|?) + C A3 (5.110)

+CA2 A(|DRm| + |D*T)) + C A3 A} + (|DRm|? + | DT|?)
Again, using Cauchy-Schwarz inequality,
C A2 A(|]DRm| + |D2T|) < CA® A + A(|DRm|? + |D>T?). (5.111)

Putting these estimates together, we have

1
S -
412l

+(I9ll = A+ CAY) (DT + |DRm|?) + CA*}

aG {ARG —t (|ID2Rm]? + |D3T?) (5.112)

By At <1 and choosing A large enough,

1

6G < ——
t 4122,

{QARG + CA3A} (5.113)

We note that the choice of constant A depends on the upper bound of ||€2||,. However, with the
assumption (5.54), we can get the uniform C° bound of the metric depending on the uniform lower
bound of [|€2||,,. Consequently, we obtain the upper bound of ||2||,,, which also depends on the
uniform lower bound of ||€2||,.

To finish the proof for k = 1, observing that when ¢ = 0,
A 2 2 2
G(0) = 5(!DT| + |Rm|*) < CAA~. (5.114)
Thus, applying the maximum principle to the above inequality implies that

G(t) < CAA* + CA3Nt < CA? (5.115)
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It follows

CA
|DRm| + |D*T| < s (5.116)

This establishes the estimate (5.55) when k& = 1. Next, we use induction on k to prove the higher

order estimates.

Using Lemma 10 and Lemma 11 again, we have

) <|DkRm|2 n ]D"““T\Q) (5.117)
1
219l
+OAS (|Dk+1Rm| + |Dk+2T|) - (|D’me| + \Dk+1T|>

IN

1
{iAR (’DkRmP + ‘Dk+lT‘2> o Z <‘Dk+1Rm|2 + ’Dk+2T’2)

2
+CA (|D’mey+yD’f+1Ty> L OA2ES (|Dkle+]Dk“T]> +CA3fk}

IN

2Hf12||w {%AR (ID*Rm[? + |DH1TP2) - % (ID**! Rm[? + | D*272)
+OA (|DkRm|2 + \Dk+1T|2> n CA?’t_k}.
Denote
fi(z,t) = |D’Rm|* + | D712 (5.118)
Then,

1 31—k
%S < qra (Asfic = fiss + CA i+ CA*F). (5.119)

Next, we apply the maximum principle to the test function

k
Gr(z,t) =t" fr+ Y N B tF fi_; (5.120)
=1

where A; (1 < i < k) are large numbers to be determined and BF = % We note that, for

1 <4 < k, we still have an inequality similar to (5.118) for fj_;.

1 .
1 5 (b
< - ) (k—1) .
< g (288fii = i + 042 E7) (5.121)
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where we used the induction condition (5.57) for the term f;_; when 1 <i < k. From (5.118) and

(5.121), we deduce

k—1 k
Gy = KU fe b PO+ N Bl (k= i)t T fili > A BT 0, fr (5.122)
i=1 =1
1
= WS+ o (288 f = firr + CA fy+ CA 1) 4 ZA BE (k=) 1 fi
1 k
L gk ki o 3 4= (k=)

i=1

1 CAt 1 k
= 2ARG), — t* e H 5L, (k:+ > + CA® 1+ A;BF
1l g o 1ol el 2

+ZA B (k—a)t" 1 f 4||Q” ZA BFt T fiin
1 CAt AlBk 1
< IARG, + tF1 fk< - 1> cA?
4HQIIW 4HQ||w 4||Q||w 412w

A Bk k—i—1 _ A Bk k—i

We note that the last two terms can be re-written as

ZA BF(k—i)th i f - —— 4HQII ZA BFtF i (5.123)
k—1 1 -
= ABF(k—i)— —— Ay BF ) P
Y (e )~ g Ao Bl
k—1 1 ‘
= Z <Ai - 4HQHA1+1> Bz+1 tk_z_l fk—i
i=1 w
Thus, we obtain
1 CAt A BF 1
G < QARG + tF 1 <l<:+ — L ) + CA3 (5.124)
' 4||Quw 4 400,/ " 4190

; A’L B k—i—1 i
+Z < 4||QHw +1) 'H—lt fk

Choosing A; large enough and A; < Ajpq for 1 <i <k —1, we have

4IIQH

1

0:Gr <
' 42,

(2ARGy, + CA?) (5.125)
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Note that

—1)!
max G(z,0) = Ay BF fo = (k—1)

zeM

Ag (|Rm|*> 4 |DT|?) < CA? (5.126)

Applying the maximum principle to the inequality satisfied by G}, we have

max G(z,) < CA? + CA3t < CA% (5.127)
zE
Finally, we get

|D*Rm| + |DMT| < CAt™ 2. (5.128)

The proof of Theorem 18 is complete. Q.E.D.

5.3.3 A criterion for the long-time existence of the flow

We can give now the proof of Theorem 17, which is the long-time existence criterion for the
Anomaly flow with o/ = 0. This section follows standard arguments in geometric flows (e.g. [64]).
The objective is to go from Theorem 18, which controls the evolving norms and connections, to
uniform estimates with respect to a fixed norm and connection.

We begin by observing that, under the given hypotheses, the metrics w(t) are uniformly equiv-

alent for t € (T'— 6, T). Indeed, for any nonzero tangent vector V,
—log|V%,,, < C 5.129
It og |V, (t) . (5.129)

Our goal is to show that the metrics are uniformly bounded in C* for some interval t € (1T'—4,T).
This would imply the existence of the limit w(7T) of a subsequence w(t;) with t; — T. By the
short-time existence theorem for the Anomaly flow proved in [89], it follows that the flow extends

to [0,7 + ¢) for some ¢ > 0.

5.3.3.1 C'! bounds for the metric

We need to establish the C°® convergence of (subsequence of) the metrics gz ;(t) as t — T'. We have
already noted the C° uniform boundedness of 9gg;(t). In this section, we establish the C' bounds.

For this, we fix a reference metric gj; and introduce the relative endomorphism
W (t) = §7P gpm (t). (5.130)
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The uniform C° bound of 9gg;(t) is equivalent to the C° bound of h(t). We need to estimate the

derivatives of h(t). For this, recall the curvature relation between two different metrics g;(¢) and
gEja

RpPm = jom — 9p(hP,V;hP) (5.131)
where V denotes the covariant derivative with respect to g;. This relation can be viewed as a
second order PDE in h, with bounded right hand sides because the curvature R’y is assumed
to be bounded, and which is uniformly elliptic because the metrics gz;(¢) are uniformly equivalent

(and hence the relative endomorphisms h(t) are uniformly bounded away from 0 and o). It follows

that

[h][ora < C. (5.132)

5.3.3.2 C* bounds for the metric

We will use the notation G, for the summation of norms squared of all combinations of V™V*

acting on g such that m + ¢ = k. For example,
Go = |[VVg|2 + [VVg|? + [VVg[2 (5.133)
We introduce the tensor
@kij = _ng@i%’ (5.134)
which is the difference of the background connection and the evolving connection: © =T'g —I'. We

will use the notation Sj, for the summation of norms squared of all combinations of V""V¢ acting

on O such that m + ¢ = k. For example,

Sy = |VVO* 4 |[VVO|? + |[VVO 2 (5.135)
Our evolution equation is
1
O19pqg = ———— Vsq, (5.136)
pq 2HQ”w pq

where \I]ﬁq = —Rﬁq + gaBQSFTBSqTafﬁ.

Proposition 11. Suppose all covariant derivatives of curvature and torsion of g(t) with respect
to the evolving connection V are bounded on [0,T). Then all covariant derivatives of 2%% with

respect to the evolving connection V are bounded on [0,T).
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Proof: Compute

v (g160) =2 S XV ()7 (5:.137)

z<m i<l

1 i1 T
(i) -+ ()
[1€2]]., [12]].,

1 i S2 i - A
= WZV“VQT“*V“V5T6*T”*T8. (5.138)

We have

Since ¥ is written in terms of curvature and torsion, and ||€2||,, has a lower bound, the proposition

follows. Q.E.D.

Proposition 12. Suppose all covariant derivatives of curvature and torsion of g(t) with respect
to the evolving connection V are bounded on [0,T). If G; < C and S;—1 < C for all non-negative
integers i < k, then Gi11 < C and S, < C on [0,T).

Proof: By the previous proposition, all covariant derivatives of 2” QH with respect to the evolving
connection V are bounded on [0,7). Let m 4+ ¢ = k + 1, and compute

=V (@ 2|\yIIQHw> +O(1)

+0(1), (5.139)

Wiq

vVt
2(|€2l.

(V+0)"(V+0) 2HQHLU

- vv'le.
2IIQHw

where O(1) represents terms which involve evolving covariant derivatives of ZIIQII and up to (k—1)th
order evolving covariant derivatives of ©, which are bounded by assumption. If £ = 0, the right-hand

side is replaced by V1@ - 2”Q” . Next, we compute

mst—1=Fk thomat—1¢
ViV Te; = =gtV Vg,
= —g"(V-0)"(V-0)""Vigy
_ _géfc@m@éfl @59313 +0(1). (5.140)
It follows that
mee Vi <O (14Tl 141
v S <C(1+|v"Vig|) (5.141)

By differentiating the evolution equation and using the above estimate, we have

aIVTVigl2 < C (1 + Wm@g@) , (5.142)
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hence Wmﬁ g| has exponential growth. This proves Gi11 < C. Then S < C now follows from
(5.140), since vaz@ = V""'V*O and we can exchange evolving covariant derivatives up to bounded

terms. Q.E.D.

We can now complete the proof of the long-time existence criteria (Theorem 17). By assumption,

for some constant A > 0 we have

sup (|Rm| +|DT?|, +|T)%) < A. (5.143)
X x1[0,T)

By applying Theorem 18, we obtain uniform control of all covariant derivatives of curvature and
torsion of g(t) with respect to the evolving connection V on a small time interval leading up to the
final time T' < oo, and therefore on all of [0, 7).

By the C! bound on the metric, we have G; < C. We see that Sy = |©| < C by definition of

©. Hence we can apply the previous proposition to deduce any estimate of the form
VMV gl < C. (5.144)

By differentiating the evolution equation with respect to time, we obtain

iSme &My Qi U5
oN"Vlg =V Vf8t<2ué’ﬁ > (5.145)

Time derivatives of ﬁ can be expressed as time derivatives of connections, curvature and torsion,
w

which in previous sections have been written as covariant derivatives of curvature and torsion. It
cmSrai [ Vs . . . . o
follows that V"V{9; (2||5§q> can be written in terms of evolving covariant derivatives of curvature
w

and torsion, and hence is bounded. Therefore

aﬁm@g‘ <c. (5.146)

We may now smoothly pass to a limit g(T") of a subsequence g(t;), and restart the flow. Q.E.D.
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Chapter 6

Anomaly Flow over Riemann Surfaces

6.1 Reduction to the base

In this chapter, which is contained in joint work with T. Fei and Z. Huang [28], we will study the
Anomaly flow on the fibration p : X — ¥ over a Riemann surface described in Chapter 2, §2.3.3.
Recall that the fibers are T equipped with the hyperkihler metrics wr, wy, wx, and there is a map
@ : Y — P! such that ¢*O(2) = Kyx. In stereographic coordinates, we denote ¢ = («, 3,7). By
pulling back sections of O(2), we constructed a metric @ on ¥ and a nowhere vanishing holomorphic

(3,0) form Q on the threefold X.

We will use the Fei [29] ansatz
wr=eHo+ el W = awr+ Bws +ywrk, (6.1)

where f € C*°(3,R). It was computed in Chapter 2 equation (2.140) that, after renormalizing €2

we have
192w, = e %, 121w, wjzc = 2volpa + 270 AW, (6.2)
and
/ 19|, w = / e/ A (6volpu). (6.3)
X X
Furthermore, d(|€2|].,, wj%) = 0 for any arbitrary function f.

A priori, there is no obvious reason why the Anomaly flow should preserve the Fei ansatz (6.1).
In joint work with T. Fei and Z. Huang, we proved that this is indeed the case, and that the entire

system reduces to a single evolution equation for the scalar function f on the Riemann surface X.
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Proposition 13. (Fei-Huang-Picard [28]) The Anomaly flow preserves the Fei ansatz wy = 2o+

efw' and descends to the following evolution equation

/ /
el = §70,0;(e! + %ﬁe_f) — red + %ﬁe_f), (6.4)
where k € C™®(X,R) is a given function such that k < 0. In fact, k is the Gauss curvature of the

metric .

To prove this, we introduce u € C*°(X,R) to be defined by

/

u=-el + %e_f/i. (6.5)

Solving for ef gives

1
ef = §(u+ u? —2a/k) > 0.

In Chapter 3 equation (3.17) (which originally appeared in [29, 24, 26]), the following identity was
derived

/

100wy — ozz Tr Rm(wys) A Rm(wy) = (i00u — ku®) A w'.

Therefore, the Anomaly flow

/
(| ww?) = 100w — az Tr Rm(w) A Rm(w), w(0) = ws (6.6)
reduces to

(Def D) AN = %(zaéu — ku) Aw'.

From here, we obtain equation (6.4) for a scalar e/ on the base X, after rescaling e/ (, s) = e/ (z, 2t)
to remove the factor of a half. The function u(¢) will play an important role in the analysis of this

reduction of the Anomaly flow. Its evolution is given by

/ /

Ou = (1 — %ne_Qf)QZEUgZ - k(1 - %n6_2f)u. (6.7)
We will also use the notation
/
Owu = a*uz, — (ka**gz.)u, a** = (1 — %/{e_Qf)gzz. (6.8)

6.2 Basic properties of the reduced flow

For the remainder of this chapter, we fix a slope parameter o > 0.
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6.2.1 A criterion for extending the flow

Recall that we work on a Riemann surface (X,) equipped with a map ¢ : ¥ — CP!, where the
curvature of the reference metric & is denoted x and satisfies K = —3||V||2. In particular x < 0,
and k = 0 at the branch points of . In this section, we will discuss some basic properties of the

evolution equation (6.4) with fixed o > 0. This equation is parabolic since it can be written as
o —2f\ 22 o —2f 2 ! —2f 2%
O — (1 — - ke )G770,0: | f = (1+ - e )Of|* — a'e”“'Re{§**0,k0:f}

/
o A
—h— e W (k? - §7kz), (6.9)
hence we may assume a solution exists on [0,7") for some T > 0, for any smooth initial data f(zx,0).

We also have the following long-time existence criterion.

Theorem 19. (Fei-Huang-Picard [28]) Suppose a solution to the evolution equation (6.4) exists
on a time interval [0,T) with T < oo. Then e/ remains bounded on [0,T). Furthermore, if

SUPsx[0,7) e~/ < oo, then the solution can be extended to an interval [0, T +¢€) for some € > 0.

First, we are going to prove the second part of Theorem 19, which states that as long as e~/

stays bounded, the flow can be continued.
/

Indeed, if we look at the evolution equation of v = ef + %e‘f k given in (6.8), we see that if

SUPsx[0,7) e~f < oo, there exists A > 0 such that
gzi < a?? < Agzz and 0 < (_Kazzgiz) < A.

Thus the evolution equation of w is uniformly parabolic on [0,7"). By applying the maximum
principle to eMu, we see that u(z,t) < eMu(x,0). Since e~/ and u are both bounded above,
we conclude that e/ is bounded, and so lull oo (2xj0,1)) < 00 and [|f][zeo(mx[o,r)) < oo. By the

Krylov-Safonov estimate [72, 73], for some 0 < o < 1 we have
[[ullasare < 00
which in turn implies that ef, a*? € C*/2. By the parabolic Schauder estimates [71], we get that
|[ul| gz+ani+arz < 00.
A bootstrap argument gives higher order estimates. Hence we can find a subsequence t; — 1" such

that u(-,t;) = up and ef(ti) s efT for some function e/T and up. Since the convergence is at least
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in L, we know that up = e/7 + %/e_fT/@ still holds. Now we can continue the flow of u using the
initial data ur. To solve for ef from u, the only condition we need is u > 0 wherever x = 0. This
condition is satisfied at t = T since e/T > § > 0, and it is an open condition, so it must be also

satisfied for some small € > 0. This proves that the flow can be extended past T'.

To complete the proof of Theorem 19, we will show that e/ cannot go to infinity in finite time.

Oé/

Let A > |k| + Enz, and consider e~ u. Then

/
(0 — azfazag)e—“u =(-A—k+ %er_zf)e_Atu.

A

Suppose e My attains its maximum on ¥ x [0,T] at (p,t9) with ¢ > 0 and u(p,tg) > 0. If

ef(Pto) < 1. then since u < ef we have
u(z,t) < u(p,to)e 1) < M,

for all (z,t) € ¥ x [0,T]. On the other hand, suppose e/(P%) > 1. Then at (p,t), we have the

inequality
/

_ e
(8 — a**8.0:)e Mu < (A — K + E/iZ)e*Atu <0,
which is a contradiction to the maximum principle. It follows that

e Mu <1+ [Ju(z,0)| oo ()

/
Q
Hence u is bounded above on finite time intervals, and since u < C implies e/ < C + 5|/<c|e_f , wWe

see that e/ must also be bounded on finite time intervals.

6.2.2 Monotonicity of energy

We first note that we will often omit the background volume form @ when integrating scalars.

1 1
I(u):2/2|8u2+2/2/€u2.

Along the flow (6.7), the energy I(u) is monotone non-increasing. Indeed, differentiating I(u) with

Define the energy of u to be

respect to ¢, we have

—I(u) = /—ugzzu— —i—/mlu
/
= — / (1-— %K@‘Qf)(gzzuiz —ku)? <0
)

Hence, along the flow, the energy I(u) is monotone non-increasing.
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6.2.3 Conservation laws

Let ¢ be any function in the kernel of L(w) = —§**ws, + kw. We will show that the integral fz efp
is constant along the flow. In particular, [y, efa, [;; e/ B, [;; e/ are preserved along the flow.

Indeed, taking the derivative of fz el o with respect to t, we have

d
fo, — f
dt/ze 4 /z(ate )¢

(e
DN

= / (%22 — Kp)u.
b

This vanishes because ¢ is in the kernel of the operator L(w) = —§**ws, + kw. As previously noted
(3.15), «, B,y are all in the kernel.

For later use, let us denote the vector

(/Zefa,/zefﬁ,/zef’y)eRg’

by V, which is a constant vector along the flow. Therefore we have

/Eefz/zef(a,ﬁ,w-;‘: v (6.10)

as long as the flow exists. As a consequence, if we start the flow with initial data such that |V| > 0,
then automatically we have a lower bound of [ el

The conservation laws presented here arise from the fact that the Anomaly flow preserves
the conformally balanced cohomology class [||Q|, w?] € H*(X;R). In the case of generalized
Calabi-Gray manifolds with our ansatz, the de Rham conformally balanced cohomology class is

parameterized exactly by the vector V', as can be seen by the expression (6.2).

6.2.4 Finite time blow up

Proposition 14. (Fei-Huang-Picard [28]) If the L' norm of ef:0) s initially sufficiently small
such that

2
sup(—k) - (/2 ef("0)> < 8a'm*(g —1)?,

3

where g is the genus of X, then the flow will develop a finite time singularity.
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Proof. By the Gauss-Bonnet Theorem, we have

—/En:4w(g—1).

Integrating equation (6.4) gives

() L5 5

By the Cauchy-Schwarz inequality,

/E’j./zefz (/2_5)2:16#(9—1)2.

If we denote by A(t) the total integral of e/ at time ¢, i.e.,

A(t) = / el 0,
P

and let K = supy(—«) > 0, then

d 8a/m%(g —1)2
—A<KA—- ————.
dt  — A

Equivalently, we have
d

AT S2KA% =167 (g — 1)%
From this inequality we see that if A(0) is sufficiently small such that
KA(0)? < 8a'n%(g — 1),
then A(t) is decreasing in ¢, hence we have the bound
/ I < / F0),
b b

In fact we have the estimate

KA(t)? <8d/m%(g — 1)* — &Rt (8a/m%(g — 1)* — K A(0)?) (6.12)
and the Anomaly flow develops singularity at a finite time. O

The above calculation allows us to give an estimate of the maximal existence time 7T'. Let

E =8d'm*(g —1)* — KA(0)* > 0.
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Combining (6.12) with (6.10), we get
K|V]* < 8d'n*(g— 1) — **TE,
hence we get the estimate

1
T < Y4 (log(8c/m?(g — 1)* — K|V|?) —log E) .

Though we may think of the Anomaly flow as a generalization of the Kéahler-Ricci flow on non-
Kahler Calabi-Yau’s with correction terms, there is a fundamental difference. In the Kéahler-Ricci
flow, it is well-known that [63, 15, 113, 114, 104] that the maximal existence time depends only on
the initial K&hler class. However for Anomaly flow, our examples shows that even if we fix the de
Rham conformally balanced class, the behavior of the flow is sensitive to the initial representative
of the cohomology class.

To be precise, choose e/ small as the first initial data such that the Anomaly flow blows up at
finite time as a consequence of Proposition 14. Let e/2 = eft + Mg be the second set of initial data,
where ¢; is the first eigenfunction of the operator —A; + 2k and M is a large positive constant
such that e*2 > —a/k/2, or equivalently, the corresponding u is positive. By Theorem 20, to be
shown below, we have long-time existence of the flow using this initial condition. Notice that the

de Rham conformal balanced cohomology class [[|€2]]., wj%] € H*(X;R) is parameterized by three

</efa,/efﬁ,/ef’y>.
b b b
Our construction implies
</ efloé’/eflﬁ7/efl,-y> _ </ efQOz,/efQB,/efQ’y),
b b b b b b

as q1 and {a, 8,7} are eigenfunctions of the same self-adjoint operator —A; + 2k with distinct

integrals

eigenvalues. Therefore we can construct two sets of initial data with same de Rham cohomology

class such that the first develops a finite time singularity and the second has long-time existence.

6.3 Large initial data

There is a class of initial data where the flow (6.4) on a vanishing spinorial pair (¥, ¢) exists for

all time. Since —k > 0, an application of the maximum principle to (6.8) shows that the condition
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u > 0 is preserved along the flow. In terms of f, this means
/
e > %(—;@). (6.13)

Solutions in this region will be said to have large initial data, and in this section we will analyse
these solutions. We recall the convention that norms and integrals are taken with respect to the
background metric &. In this chapter, we will use the convention for the real Laplacian 2i00v =

A(;,’U w.

Theorem 20. (Fei-Huang-Picard [28]) Suppose u(x,0) > 0, or equivalently (6.13), and start the
Anomaly flow (6.4) with o/ > 0. Then the flow exists for all time, and as t — oo,
el
(S5 e*) 2

smoothly, where q1 is the first eigenfunction of the operator —Ag + 2k with normalization g1 > 0

—q

and ||q1|l2(s0) = 1-

We note that if u(z,0) > 0 at the initial time, then by the strong maximum principle, for ¢ > 0
we have u(z,t) > 0. Indeed, let B > 1 be such that 2(—x) — B < 0. Let up = e B%u. Then using

the evolution of u (6.7) we obtain the evolution of up:
_ o
oup — a”?0,0sup — (B +(—k)(1— 2/{6_2f)> ug = 0.
By (6.13) and choice of B, we have
a/
< — B+ (—k)(1— 2H€2f)> <0.

Therefore we may apply the strong maximum principle [80] to conclude either up > 0 for all ¢ > 0
or up = 0. But u cannot be identically zero by its definition, since at a branch point p of ¢ we

have k(p) = 0 and u(p) = e/ (p). This implies u > 0 for all ¢ > 0.

Therefore, after only considering times greater than a fixed small time ty > 0, we may assume

that u > 26 along the flow, which means in terms of f that
el >\ =(—kr)+4. (6.14)

for some & > 0. This provides a uniform upper bound for e=f, and we can apply the long-time

existence criterion (Theorem 19) to conclude that the flow exists for all time ¢ € [0, 00).
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Though we now have a solution for all time ¢ € [0, c0), we will obtain more refined estimates to

understand its behavior at infinity. In the following sections, we use the standard convention that

constants C' depending on known quantities may change line by line.

6.3.1 Integral growth

Let ¢1 be the first eigenfunction of the operator —Ag + 2k with eigenvalue A;. It is well-known

that g1 > 0 and \; < 0. For more refined estimates on A1, see [27]. To avoid sign confusion, we let

0<n= —%. Our first estimate concerns the exponential growth of the integral fz el

Proposition 15. Let § > 0, and start the flow with u(x,0) > 26. Then there exists a constant

C > 1 depending on (X, ¢), o and § such that
cle < / el < Cem.
b

Proof. We first compute the evolution of the inner product of e/ with ¢;.

4
dt Js

/ /
(6fQ1)w /qu i83(€f+ %’ieif) —/ZQ1H(6f+O;Hef)w

/
= /(ef + g/ie_f)(z'@éql — KQIW)
n 2

O[,

= 77/ q(ef + —re .
5 2
We will often omit the volume form @ when integrating. Since ¢; > 0 and x < 0, we have

d
- Ta1 < f
dt E€Q1_77/Z€Q1-

Therefore

/ efq < Ccet.
b

On the other hand, by (6.13) we have

d efq > / el / \/ o/l
dt J qi =" EQI n qu 5
d ([ _ _ o |K|
e g, — et >0
dt(e /Ee Qe /Zth\/ 5 ) =0

It follows that
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and integrating this differential inequality gives

ok o |k
/6fq1 > </ef(0)q1—/q1\/2‘>e”t+/q1\/2".
N N ¥ N
Using (6.14), we have
/
/6f6}125</ Q1>6nt+/Q1\/a2ﬂ|-
pH M M

Combining both bounds on [ el q1 gives

cle < / efq1 < Ce.
b

Since q; > 0 on 3, we obtain the desired estimate. O

6.3.2 Estimates

In this section, we obtain more precise estimates for u as t — oo.

Proposition 16. Suppose u > 26 att = 0. There exists T > 0 and C > 1 depending on (3, ¢), o/
and § with the following property. For all t1,ta > T such that |[t; — ta| < 1, then

C_l/zu(tg) S/Eu(tl) SC/Eu(tg).

Proof. Since u = ef + %/e_fn, by the growth of [ el (6.15) and the upper bound of e~/ (6.14),
we have

Ccle"—C < / u < Ce™,
b

for all t € [0,00). It follows that there exists 7' > 0 such that for all ¢ > 7', then
C—l
—e < / u < Ce™, (6.17)
2 >

The desired estimate follows. O

Proposition 17. Start the flow with u(x,0) > 2§. Then there exists T > 0 and C' > 1 depending
on (X, ), & and § such that

c! (/E u2> v <u(x,t) < C (/E uz)m,

forallt>T.
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Proof. Fix tg € (T,00), where T is as in Proposition 16. For the following arguments, we will

assume that 7 >> 1. Let n be a real number such that to € [n+ 3,n + 1]. As before, we have
(0 — a*%0.05) e~ Blt—to)y, < 0,

for B > 2supy, |k| and §** < a** < Ag**. By the local maximum principle [75, Theorem 7.36], for

every p > 0 there exists a uniform C > 0 such that in a local coordinate ball By there holds

n+1 1/p
sup e Blt—to)y < C’(/ / (eB(ttO)u)p> . (6.18)
B1/2><[n+%,n+1} n B1

Let us take p = 1, and center this coordinate chart around a point p € ¥ where u(z,tp) attains its

maximum. Since fz u is comparable at all nearby times by Proposition 16,
supu(to) < C [ ult).
p) b
It follows that for all ¢ > T, then
C Ml iy () < Mlullz2emy (8) < Cllullpr ) (®)-

Hence by Proposition 16, [|ul|z2(x) is also comparable at all nearby times. Stated explicitly, for

t1,to > T and |ty — t1] < 1, then
C™Hull 2y (t2) < llull 25y (t1) < Cllull pz(s) (t2). (6.19)
Next, choosing ty € (T, 00) and ty € [n,n + 1], we observe
(0 — a*%0.05) eBt—to)y > 0.

Cover ¥ with finitely many local coordinate balls U;. By the weak Harnack inequality [75, Theorem
7.37], for some p > 0 there holds

n—1 1/p
inf  Blto)y > ot (/ / (eB(t_tO)u)p> :
U; x[n,n+1] o n—2 ¢

Suppose the infimum of eB¢=%)y on ¥ x [n,n + 1] is attained in U;. Let Uy be another chart such
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that Uy NUs # (. Then

n—3 1/27
( / / (eB(ttO)u)p> C inf eBt—to)y,
n—4 JU; o Us % [n—2,n—1]

A

< inf eBlt=to)y,
- U2ﬁU1><[n 2,n— 1
n—1 1/p
U1
< 1nf eBt=to)y,

E>< [n,n+1]

There exists a uniform mg > 0 depending on the covering ¥ C JU; such that after applying this

argument mg times, we can deduce

n—mo 1/P
inf B0ty > ! </ /(eB(ttO)u)p> .
X [n,n+1] o n—(mo+1) JZ

We can assume that kg = n — mg > 1 since T' > 1. By (6.18), we obtain

ko 1/p 1/2
(/ /(eB(t_to)u)p> >C! sup u>C" (/ /u2> .
k:o—l by EX[ko—l/Q,ko] ko 1/2

Combining these estimates
n—mo 1/2
infu(tp) > inf w> C’l</ / u2> .
Y Ex[n,n+1] n—mo—1/2J%
By (6.19), we see that [, u? is comparable at all times in a bounded interval, hence

1nfu(t0) >C” 1”UHL2 ( 0)-

We now introduce the normalized function

u(z, t)

YD = e O

(6.20)
We have established that for t > T,
Cc <w(x,t) < C.

We now obtain uniform higher order estimates for v.
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Proposition 18. Suppose u > 2§ at t = 0. There exists T > 0 depending on (X, ), & and § with
the following property. For each k, there exists Cy, > 0 depending on (3, ), o and 0 such that the

normalized function v = u/||ul| 2y can be estimated by

[ollors) (8) < Ck,
for any t € (T, 00).

Proof. Let T be as in the proof of Proposition 17. We fix ty € (T, 00), tg € [n,n + 1] as before and

consider
u(x,t)

W= ——7.
[l 2(m) (o)

By (6.19), we have the estimate
C™ <w(z,t)<C

for t € [n,n + 1] and w satisfies
0w — a**wz: + (ka**gz)w =0, §*° < a™ <AG™, 0< (—ra™gs) <A
By the Krylov-Safonov theorem [72, 73], there exists § > 0 such that
lwllessr2mxmnr) < C-

The Hélder norm of e/ = (u+ vu2 — 20/k) on ¥ x [n,n + 1] can now be estimated by a constant

times ||ul[2(x)(to). For z,y in the same coordinate chart and ¢, s € [n,n + 1], we have

I @) of (v.9) <20 5 u(y, s)

C to)(|z — t—s[1/2)° t
e~ f(@) _ =1 9)] < [l L2y (o) (2 =yl + [t — s|'/%) 1 Hu||L2(Z)(0)(|x7y|+|t78|1/2)5‘

Thus we have ||67f||()5,5/2(2x[n,n+1}) < C. This implies a Holder estimate for a**, and we may apply
Schauder estimates [71] to bound w uniformly in C2+%1+9/2(% x [n, n + 1]). Higher order estimates

follow by a bootstrap argument.

We have obtained estimates on spacial derivatives of u on the time interval [n,n + 1] in terms

of [[ullg2(s(to)- By (6.19), it follows that |[v||cw(x)(t) < Ck uniformly. O

Our last estimate concerns the function f, and is a consequence of our work so far.
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Proposition 19. Suppose u > 26 at t = 0. There exists T > 0 depending on (X, ), & and § with
the following property. For each integer k, there exists C, > 0 depending on (3, ¢), o and § such
that on (T, 00),

e ! < Coe™™,  |IVFfll Lo (mx(T,00)) < Ck for k > 1. (6.21)

Proof. Since u < ef, by Proposition 17 we know
o f C C
~ ullpzsy T fz

By (6.17), for all t > T, we have e~/ < Ce . Next, by the definition of u in terms of f, we note

the identity
/
ud, f = 0,u — %e_ff)zn.

0

Combining Proposition 17 and Proposition 18, we have a uniform bound for —Zu, and a lower
U

bound for u. It follows that 0, f is uniformly bounded. Further differentiating the identity above

gives higher order estimates of f. O

6.3.3 Convergence

With the estimates obtained in the previous section, we can now show convergence of a normaliza-

tion of e/ along the flow, for initial data satisfying u(z,0) > 24.

From the definition of v (6.20) and the evolution of u (6.7), we have the following evolution

equation

/

/
ov = (1- %ne Pz, — k(1 — %/1672]0)?)

/
—v/ v<1 —Ke 2f> (§% vz, — k). (6.22)
) 2

We will look at the energy of v along the flow.

1 1
I(v) = 2/2 |0v|* + 2/Em}2.
Differentiating gives

d _
dtI( v) = —/Zbgzzvzz#—/zﬁm)

/ /
= —/1’)(1}—1—& Ke 2fgzzvzz+/<;(1—a/<;e_2f)v)
. 2 2
o .
—/ z'w/ v(l—/@e_gf)(gzzvzz—kw)—l—/ KvO.
b b 2 b
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From differentiating fz v? =1, we see that fz v0 = 0. Therefore

d o _
Bl ¢ 22 —2f\(r2Z L — 3
1) = /ZU 5 /Z(Ke NG5 vz: — Kv) D

By Proposition 18, we have |[[v[|c2(x)(t) < C along the flow. By (6.22), we see that © is also
uniformly bounded along the flow. By (6.21), it follows that there exists 7" > 0 such that for all
t > T then

dt by

We claim that as t — co, we have that fz ©%2 — 0. Suppose this is not the case. Then there exists

d —I(v) < / 2 + Csupe 2 < —/ ? 4 Ce ™, (6.23)
b b

a sequence t, — oo such that [, 9%(¢,) > e > 0. By our estimates,

d .9
il

therefore there exists 6 > 0 such that [y, 0> > ¢/2 on [t,, — 0, ¢, + 6]. Using (6.23), we obtain

I(v)(s)—[(v)(T):/ 4wyt < — //v +c/ e,

and we see that I(v)(s) is not bounded below as s — oo, which is a contradiction.

<C,

We can now show that v converges smoothly to ¢, the first eigenfunction of the operator
—Ag + 2k. Indeed, suppose this does not hold. Then there exists a sequence of t; — oo such that
after passing to a subsequence we have v — v, smoothly and v, # q1. Applying Proposition 18 to
the expression for ¥ (6.22), we may use the Arzela-Ascoli theorem and assume that o(t;) converges
uniformly to some function. Since [;;9? — 0, we conclude that o(¢;) — 0. Letting ¢; — oo in the

evolution equation of v (6.22), we see that

s KU
gzz(voo)fz_"fvoo =NV, N=— fE Ooa
J5 Vs
with
Voo > 07 ||UOO||L2(Z) =1.
This identifies vy, as q1, a contradiction.
To complete the proof of Theorem 20, we remark
u
Il
lle ”L?(z)
and
I L2 S G AN
e/ 2(sy lefll2esy 2 lleflley) -
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6.3.4 Collapsing of the hyperkahler fibers

In the previous section, we gave the proof of Theorem 20. We would like to interpret this theorem

geometrically.

Theorem 21. (Fei-Huang-Picard [28]) Start the Anomaly flow with &' > 0 on a generalized Calabi-
Gray manifold p : X — ¥ with initial metric wy = e2f o+ efw satisfying |o Rm(wy)| < 1. Then

the flow exists for all time and as t — oo,

wf

T — Pws
1 9y
3! fX HQwa w?
smoothly, where ws, = ¢?& is a smooth metric on ¥ associated to the vanishing spinorial pair

(Z,p). Here qi > 0 is the first eigenfunction of the operator —Ag — ||V||2. Furthermore,

X, A converges to (X,ws) in the Gromov-Hausdorff topology.
31 Jx ”Q”wf Wy

On the threefold X, we are studying the evolution of the metric w; = e?f & + efw’ under the

Anomaly flow. By (6.3), if we assume [, dvolps = 1, then

Wy el 2A el 1 ,
T 3 = 7 w + 7 7 w.
ﬁfx ||Q|’wf W e HL?(E) e ||L2(2) e ||L2(Z)

We see that if u(x,0) > 0, then as t — oo the hyperkéhler fibers are collapsing and the rescaled

metrics converge to the following metric on the base

./ SN
%fx HQHw/ w:;f

wf

w.

From here, it can be established that (X, ) converges to (3,¢7®) in the Gromov-

3T Jx HQwa w?

Hausdorff sense; this statement can be found in ([106, Theorem 5.23]).

The Anomaly flow has produced a limiting metric wy, = ¢?& which can be associated to a

vanishing spinorial pair (X, ¢). Its curvature is given by
—i00logws, = —(2nq; *)ws + ¢ wrs + 2ig; 20q1 A dq.

In section [28], we showed that ¢*wrg = wyp. To complete the proof of Theorem 21, it remains

to relate the initial condition u > 0 with |0/ Rm(wy)| < 1.
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6.3.5 Small curvature condition

It was shown in [89] that the Anomaly flow exists for a short-time if |/ Rm(wp)| is small initially.
In this subsection, we show that under the reduction of the Anomaly to the Riemann surface, our

long-time existence result (Theorem 20) can be interpreted as the condition
lo/ Rm(wy)| < 1

being preserved under the flow (6.4).
The first step is to compute |[Rm(wy)| in terms of f. Based on the complicated calculation in

[26, 24], one can compute directly that
|Rm(wp)| ~ e + e 2 |0f| + e 2 |As f|.
It follows that if |’ Rm(wy)| < 1 initially, then

1,—2f
u:ef<1+0“3 m>>0

initially, hence we have long-time existence. Moreover by Proposition 19, we deduce that the

condition |/ Rm(wy)| < 1 is ultimately preserved under the flow and in fact this quantity decays
exponentially. Hence we have proved Theorem 21.

In [84], it is shown that the Anomaly flow with o/ = 0 exists as long as |Rm|? + |DT|*> + |T'|*
remains bounded. Here T is the torsion tensor associated to the Chern connection. For our reduced

flow (6.4) on Riemann surfaces with o/ > 0, a similar calculation indicates that
|Rm|* + | DT + [T[* ~ e + e ¥[of|* + e [V £,

If this quantity is bounded, then in particular e~/ remains bounded, and by Theorem 19 the flow
can be extended. This observation suggests the possibility of generalizing the long-time existence

criterion in [84] to the case when o/ > 0.
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Chapter 7

Anomaly Flow with Fu-Yau Ansatz

7.1 Reduction to the base

In this chapter, which is contained in joint work with D.H. Phong and X.-W. Zhang [83], we study
the Anomaly flow on a Goldstein-Prokushkin fibration with the Fu-Yau ansatz. We recall that the
Goldstein-Prokushkin fibration is a 7?2 fibration over a Calabi-Yau surface, and the construction
was discussed in §2.3.4 of Chapter 2.

Restricted to a Goldstein-Prokushkin fibration, we will see that the Anomaly flow becomes
equivalent to the following flow for a metric w = igy; dzJ Adz* on a Calabi-Yau surface X, equipped
with a nowhere vanishing holomorphic (2, 0)-form €,

B = _2!f12||w (]; —|T? - Ciag(iRicw) + 2a’i88(!uw - 2&) w (7.1)
where p is a given (2,2) form, p is a given (1,1) form, and o2(®) = ® A w2 is the usual
determinant of a real (1,1)-form ®, relative to the metric w. The expression |T|? is the norm of

the torsion of w defined in (7.17) below.
Since the flow is conformal, it can be rewritten as a flow of the conformal factor w = e“w,

i00(e " %p)

1 _
Ou = 3 (A@u + e Mo (i0du) — 20’ e —— + |Dul? + e"ﬁ) (7.2)
W

2

where i = 2u@™° is a time-independent scalar function, and both the Laplacian Ag and the

determinant 69 are written with respect to the fixed metric w.
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We now go through the derivation of this equation. Consider a Goldstein-Prokushkin fibration
m:Y — X, where (X,®,Q) is a Kéhler Calabi-Yau surface with Kéhler Ricci-flat metric @. As

discussed in §2.3.4 of Chapter 2, there exists a connection (1,0) form 6 on Y such that
Qy =Q A0 (7.3)

is a nowhere vanishing holomorphic (3,0) form. For any smooth function v on Y, we introduce the

following metrics w, and x, on the manifolds X and Y respectively,
wy = e'w, Xu = T (e"D) +i0 A 0. (7.4)

By Proposition 7, we have that x, is a conformally balanced Hermitian metric for any scalar
function u. Furthermore,

HQ”wu = e_u' (75)

Let (Ex,Hx) — (X,®) be a stable holomorphic vector bundle, which we can equip by the
Donaldson-Uhlenbeck-Yau theorem [22, 117] with Hermitian-Yang-Mills metric Hx. Let E =
7™ (Ex) — Y be the pull-back bundle over Y, and let H = 7*(Hx). As shown previously (3.20),

H is Hermitian-Yang-Mills with respect to x, for any scalar function u.

The computation of Fu and Yau [43] for their reduction of the anomaly equation, which was

previously discussed in §3.3, gives

i00%, — % Te(Bm(x,) A Bm(x.) ~ F(H) A F(H))

/
= i00(wy — |||, p) — %8(%, A OB + 1 (7.6)
with p € QY1 (X, R) depending on @, 6, and p the (2,2)-form defined by

/

p=—00 N300 — (iTr(Rm(dJ) A Rm(®)) + %Tr(F(HX) N F(Hx)). (7.7)

The computation (2.186) done previously gives

019y llxz) = (|92 w,wi)- (7.8)

Thus the Anomaly flow for Goldstein-Prokushkin fibrations is equivalent to the flow for metrics on

X given by

/
0 (|||, w2) = 108wy — & ||Q|u, p) — %85u A 8du + pu. (7.9)
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From now on, in this chapter we will suppress the subindex v in w,. We note that

Ric, = —200u, (7.10)
and so the Anomaly flow becomes
(| ww?) = i00(w — & ||Q|wp) — OS/Rij A Ricy, + . (7.11)
Next,
0e([|9l|ww?) = Ope® = —|2](8; log |2 )w”. (7.12)

As in Chapter 2, we define the torsion T'(w) = 17, kpg 427 N\ d2P N dz* of the Hermitian metric w by
T = i0w, T = —idw, (7.13)

and we also introduce the (1,0)-form 7T}, and the (0, 1)-form Ty, by

T = ¢ T = —Omu, T = ¢ T = — O (7.14)
We note
Ty(w) = 0glog |Qllw,  Ty(w) = Oglog |l (7.15)
and
Ryj(w) = 2VETj(w) = 2V, Ti(w). (7.16)

We will use the notation
T1? = g™ T, T; (7.17)

rather than |iOw|?, which can be verified to be equal to 2|T|?. Using (7.10) and (7.14), we may
compute

AR 1 g W2
100w = 5(—R+ 2|T| )7 (7.18)
Substituting this equation and (7.12) in the flow (7.11), we obtain

1 /R i00(|Qwp) o .. i
log[|Ql, = —— = — |T|? + 20/ =NV 2 L) — le? 1
ovtog |9 = = (5 — 172 + 20 2B Sonimicy) — joizi). (o)
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where we have introduced the time-independent, scalar function ji by p = ﬂ‘:’;, and the o9 operator

with respect to the evolving metric

w?

205 (iRic,) - = iRic, A iRic,. (7.20)

Since the metric w = e“w is entirely determined by the conformal factor €%, this flow for the volume
form is equivalent to the flow of metrics (7.1). The flow in terms of the conformal factor u is easily
worked out to be given by the equation (7.2). The main theorem in this chapter is joint work with

D.H. Phong and X.-W. Zhang.

Theorem 22. (Phong-Picard-Zhang [83]) Let (X,&) be a Calabi-Yau surface, equipped with a
Ricci-flat metric @ and a nowhere vanishing holomorphic (2,0)-form Q normalized by ||Q|s = 1.
Let &' be a non-zero real number, and let p and p be smooth real (1,1) and (2, 2)-forms respectively,

with u satisfying the integrability condition

[u=s 721

Consider the flow (7.1), with an initial metric given by w(0) = M &, where M is a constant. Then
there exists My large enough so that, for all M > My, the flow (7.1) exists for all time, and

converges exponentially fast to a metric ws satisfying the Fu-Yau equation
_ 0/
100(woo — ||| wa p) — gRicwm A Ric, +p =0, (7.22)
o W2
and the normalization [ ||Q|w. 52 = M.

The short-time existence of the flow can be seen directly from the parabolicity of the flow, which

holds when the form

/

W =e"w+ad'e p+ a'iddu > 0, (7.23)

is positive definite. This can be seen from the scalar equation (7.2). We will always assume that

we start the flow from a large constant multiple of the background metric
w(z,0) =log M >1, w(0) ="V =Mo. (7.24)

Recall that p is defined in (7.7). In all that follows, we will assume that the cohomological condition

/X h=0, (7.25)
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is satisfied. Integrating (7.9) and using the fact that ||Q||,w? = e%&? gives the following conservation

law

d [ &

— — =0. 7.26

T T (7.26)
Hence

~2
/e“w:M, (7.27)
T

along the flow.

7.2 The C° estimate of the conformal factor

In this section, we will work with equation (7.9), since it will be easier to work with differential
forms to obtain integral estimates. We let @ denote the fixed background Kahler form of X. We
can rescale W such that [y “’2—,2 = 1. We will omit the background volume form “5—,2 when integrating

scalar functions. The starting point for the Moser iteration argument is to compute the quantity

/ i0d(e P AW, (7.28)
X

in two different ways. Recall that w’ is defined in (7.23). On one hand, by the definition of w’ and

Stokes’ theorem, we have
/ i00(e ) AW = / {e"G + /e "p} NiDD(e Y. (7.29)
X X
Expanding
/ i00(e P AW = kP / e FuletG + o/e U p} Nidu A Du
X X
—k/ e M et + /e Mp} Niddu. (7.30)
b'e

On the other hand, without using Stokes’ theorem, we obtain

/ i0d(e MY AW = kP / e MU A du AW — k:/ e ety + o'e M p} A idOu
b'e b'e X

—o/k/X e *4i00u A i00u. (7.31)
We equate (7.30) and (7.31)
0 = —k? /X e Fidu A Ou AW+ K /X e FuletG 4 oe T p} Nidu A Du
+a'k /X e Fi00u A iddu. (7.32)
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Using equation (7.9) and that ||Q||,w? = e%&?,

0 = —k? / e Fidu A Ou AW + K / e M ets 4+ o'e Mp} Nidu A Du
X X
~2
—Qk/ e Ry — Zk/ e M0 (e"w — /e p) + 4/<:/ e*(kfl)“(?tuw—'. (7.33)
X X X 2!
Expanding out terms and dividing by 2k yields
k - k _
0 = —= / e Figu N Ou AW + = / e Fuleto 4+ o'e U p} Nidu A Du — / e Fuy
2 Jx 2 Jx X

— / e~ *FD%95u A & — / e R A Bu A — o// e~ D% 58u A p
X X X

+o// e V%00 A du A p + o// e~ %99,
X X

N

P, —(k+1)u, a5 —(k—1)ug,, ¥
U :
2aRe/e z@u/\@p—i—Q/e Oy (7.34)

Integration by parts gives
k = k _
0 = —- / e Figu A u AW — = / e Fufets + o/e Mp} Nidu A Du
2 X 2 X
—/ e ey 4 o// e~ kU5, — O/Re/ e~ Y90 A §p
X X X
~2
—(k=Lug , “
+2 /X g (7.35)
One more integration by parts yields the following identity:

k / e ety + o/eMp} Aidu A Qu + 9.2 / e_(’“_l)“é—2 (7.36)
2 Jx otk—1Jy 2! '
/

= —g /X e Mou A du AW — /X e M+ (o' - kj— 1) /X 6_(k+1)uiaép-

The identity (7.36) will be useful later to control the infimum of u, but to control the supremum

of u, we replace k with —k in (7.36). Then, for k # 1,

k / e® VUG ol 2 pY A idu A Du + 9.2 / e(k“)“dﬁ (7.37)
2/ otk +1 /s p]]
/
= —k/ eFidu A du A W' +/ ey — (of — a )/ eB=1%90p.
2 Jx X 1—-k"Jx

7.2.0.1 Estimating the supremum

Proposition 20. Start the flow with initial data e**0) = M. Suppose the flow exists for t € [0,T)

with T > 0, and that infx e* > 1 and o’e=2"p > —1& for all time t € [0,T). Then

sup e < Ci1 M, (7.38)
X x[0,T)
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where Cy only depends on (X,w), p, p, o

Proof: As long as the flow exists, we have
i0u A\ Ou Aw' > 0. (7.39)

Let 8 = - = 2. We can use (7.39), (7.37), and o/e**p > —1& to derive the following estimate
for any k >

k a 2
n (k+1)u 2, Y (k+1)u - ku (k—1)u
C [ et 22 b < e 2l [ et [ ) rao)

. 22 . . .
Here we omit the background volume form %y when integrating scalars. We now consider two cases:

the case of small time and the case of large time.

We begin with the estimate for large time. Suppose T' € [n,n + 1] for an integer n > 1. Let
n—1<7 <7 <T. Let {(t) > 0 be a monotone function which is zero for ¢ < 7, identically 1 for

t > 7', and |¢'| <2(7" — 7)~!. Multiplying inequality (7.40) by  gives, for any k > f3,

k¢ (k+1) 2 0 2¢ (k+1)
> U D I u
1 /X‘“’ Dul™+ 51 /€

< Ull= +2elplen{c [ e [ et 2o [ o )

Let 7/ < s < T. Integrating from 7 to s yields

k [?° 2
k (k+1)u| 7y, (2 (k+1)u
1 /T/ /Xe | Du|* + Pl /Xe (s) (7.42)
T T 1 T
< C{/ / e(kl)“—F/ /ek“—F p / / e(kH)“}, (7.43)
T X T X T =TJr X

for any k > (3, where C only depends on o', p, u. We rearrange this inequality to obtain, for

k>p+1,
k—1 5
( - )/ / |De§u|2+/eku(s)
' JX X

T T 1 T
C’k{ / / ek=2u 4 / / elk=Du 4 / / ek“}. (7.44)
! _
T X T X T TJr X
s 1 T
//|De’SU|2+/ ek“(s)SCk{1+ - }{/ /ek“} (7.45)
7 JX X T =T T X
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The Sobolev inequality gives us

1

</ kﬂu) < C </ o5 (2 + /IDe “\2> (7.46)

where C' is the Sobolev constant on manifold (X,&). Let * be such that % - = 1. By Holder’s

ﬁ
inequality and the Sobolev inequality,

T . T 1/8 1/8"
/ /ekueﬁ*u < / (/ ekﬁu) (/ eku>
7 JX T/ X X
1/
< C% sup </ ek“) / {/ bu /|De2“|2} (7.47)
te[r’ | T] X

Using estimate (7.45), and defining v =1 + ﬁ—l* =1+ %, we have for k > 1+ 8,

</T/T/X€vku>1/v . Ck{1+ T/iT}/TT/Xe’W, .

We will iterate with 7, = (n — 1) 4+ 61 — v %(6; — 6), for fixed 0 < f < 0; < 1.

T , 1/yk+1 2k /" 1/~%
(/ / 67k+1"> < {C’vk +(6; — )71 107 } {/ / eV “} . (7.49)
Tk+1 X -

Iterating, and using Y, 7~* = 3, we see that for p = v > 1+ 3, there holds

C
su et <~ |le® - 7 750
Xxfotior ) (01— 02) ez (exin-1402.1 (7.50)

where C only depends on (X,®), p, i, and o’. A standard argument can be used to relate the L?

norm of " to |’ €= M. Indeed, by Young’s inequality,

1/p
sup et < Cb — 02)_3< sup e(l_l/p)“’> (/ e“)
X x[n—1+461,T] X x[n—1+465,T] X x[n—1+62,T)
1
< = sup e+ C(0, — 92)3p/ e", (7.51)
X X[n—1+62,T) X X[n—1,T]

for all 0 < 03 < 07 < 1. We iterate this inequality with g = 1 and 6;41 = 6; — %(1 — )t where
1/2 <% < 1. Then for each k > 1,

1 PPOM a1\
sup e* < sup e |+ ( . > . 7.52
X x[n,T] 2k (Xx[n1+9k,T] ) (1 —m)3rp3p ; 2n3p (7-52)

Taking the limit as & — oo, we obtain a constant C' depending only on (X, ®), p, u, o such that

sup e" < CM, (7.53)
X x[n,T)
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for any T € [n,n + 1] and integer n > 1.

Next, we adapt the previous estimate to the small time region [0,7] C [0,1]. The argument
is similar in essence, and we provide all details for completeness. Integrating (7.40) from 0 to

0 < s <T yields

s T T
k/ / 6(l»c—&-l)uu)u|2 + 2 / e(k—l—l)u(s) < C{/ / e(k—l)u +/ / ek + Mk+1},
4 Jo Jx k+1)x 0o Jx 0o Jx

for any k > 3, where C only depends on o', p, u. We rearrange this inequality to obtain, for
k>p+1,

(k — 1) ° k)2 ku ’ (k—2)u ’ (k—1)u k
|De2"|* + [ e™(s) < Ck e + e +M" 5. (7.54)
k 0 JX X 0 X 0 X

Using e < 1, we obtain the following estimate, which holds uniformly for all 0 < s < T.

/OS/X|D6’SU|2+/X6’W(3) <Ck{ /OT/Xek“—i—Mk}. (7.55)

As estimate in (7.47), by the Holder and Sobolev inequalities there holds

T A /8" T X
/ / efuer ™ < C sup </ ek“> / {/ ek“+/ |De2“|2}. (7.56)
0o Jx sel0,1] \Jx 0 X X

Recall that v =1+ Bi Thus for £ > 1+ g,

/OT/Xe’fW < (Ck)7</OT/Xe’W+M’f>7. (7.57)

(/(]T/)(ekw—i-Mk“f)lM < {(ck)w</0T/Xeku+Mk>7+Mk7}1”’ o)
</OT/Xemu+Mk7>1/w - Ck:{ /OT/XGkUJer}‘ (7.59)

It follows that for all ¥¥ > 1 + 3,

T 1/ykH 1k e 1/4*
< / / ey M”kH) < {ny’“} { / / et MVk} . (7.60)
0 X 0 X

Iterating, we see that for all k such that ¥ > %0 > 1 4 3,

A\ W T . Y Uo
(C’f}/l> }{/0 /X67 0“—|—M70} . (7.61)
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Sending k — oo, we obtain for p = "0,

sup e < O([|e|[ o (x xpo,r7) + M), (7.62)
X x[0,T]

where C' only depends on (X,®), p, p, and «/. Lastly, we relate the LP norm of " to fX e =M.

By the previous estimate

: 1/p
sup e" < C’( sup e(p_l)“> ’ (/ e“) + CM. (7.63)
X x[0,T] X x[0,7] Xx[0,T]

We absorb the supremum term on the right-hand side using Young’s inequality. Therefore,

sup e <CTM+CM < CM, (7.64)
X x[0,T]

for any 0 < T'< 1, and C only depends on (X,w), p, i, and o'

By combining (7.53) and (7.64), we conclude the proof of Proposition 20. Q.E.D.

7.2.0.2 Estimating the infimum

We introduce the constant

1
=51 (7.65)
Note that since C7 > 1, we must have 0 < 6 < 1. Fix a small constant 0 < § < 1 such that
d < o , and o/6%p > —1(1), (7.66)
ACx (| llpllcz + llpllco) 2
where Cx is the Poincaré constant for the reference Kéhler manifold (X,w). Define
Ss:={te0,T): S;p e " <o} (7.67)

Recall that we start the flow at ug = log M. It follows that if M > 6!, then the flow starts in the

region S5. At any time £ € Ss, we consider U = {z € X : 7" < %} Then by Proposition 20,

M M
M :/ e +/ et < [Usupet + (1— UL < evm(u] + (1 — )L (7.68)
U X\U X 2 2
It follows that at any £,
Ul > 6 >0. (7.69)
We will also need the constant Cy > 1 defined by
1 2.(2
= 1+ = |- .
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7.2.0.3 Integral estimate

Proposition 21. Start the flow at ug = log M, where M is large enough such that the flow starts
in the region Ss. Suppose [0,T] C Ss. Then on [0,T), there holds

_ 2Cy
v 7.71
/X =) (7.71)

Proof: At t = 0, we have fX et = ﬁ < % Suppose t € S5 is the first time when we reach

fX e = % Then we must have

0

e " >0. 7.72
ot tzf/X N (7.72)

Setting k = 2 in (7.36) and dropping the negative term involving w’ > 0, we have

/X TG4 /e pY Nidu A idu + 2= / < (a |||p\|cz/ —Su g HMHCO/)(e_%) .

[y e >0, and e * < § < 1, there holds at £,
t=t

: 0
Since 5

/X D% 2 < (Jo/|llollce + lllleo) /X (7.73)

[l [
( 2) Z /X e, (7.75)
/Xe“ < 1iz</xe¥>2. (7.76)

Let € > 0. We may use the measure estimate and (7.76) to obtain
> 2

</Xe’£)2 < (1+Z)</Ue¥>2+(1+g)</X\Ue

< sl [ e ga- 'U')/X\U

By the Poincaré inequality

/;“-(/ )

By (7.66), we have

2

to\:

gCX/ De 3|2 (7.74)
X

| /\

and it implies

wle

< asdmrarpo-acty (o). @
Thus
</Xe;>2 (1+Z)]\24< (1+g)(11—9)(1—i)—1>' (7.78)
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For any 6 > 0, we have the elementary estimate

(1+g)(1—0)(1—§)*1 <1-6° (7.79)
Using this and (7.76),
_ 1 2./2\1 Co
/Xe —1_3(”9)(92)1\4 o (7.80)

This contradicts that [y e " = Lo at {. It follows that [ e stays less than Lo for all time

t € S;.

7.2.0.4 Iteration

Proposition 22. Start the flow with initial data e™9) = M. Suppose the flow exists fort € [0,T)
with T > 0, and [0,T) C S5. Then

Co
sup e ¢ < — (7.81)
Xx[0,T) M

where Cy only depends on (X,), p, 1, o.

2u

Proof: We can drop the negative terms involving w’ > 0 and use o’e *%p > —%d} in (7.36) to

obtain the estimate, for k > 2,

k o 2
Jad —k=Dupy2 4 == —(k=1u / —(k+1)u / —ku ) .82
4/)(6 [Dul +8tk—1/xe _C< " " " (7.82)

As in the upper bound on e%, we split the argument into the cases of large time and small time,

and first consider the case of large time.

Suppose T' € [n,n+1] for an integer n > 1. Let n—1 < 7 < 7/ < T. Let {(¢) > 0 be a monotone

function which is zero for ¢t < 7 and identically 1 for ¢ > 7’. Multiplying (7.82) by ( gives

k¢ —(k—=1)u 2 2¢ —(k—=1)u / —(k+1)u / —ku // —(k—=1)u
Duf? + £ < + + :
4/xe [Dul otk —1 Xe “© Xe ¢ Xe ¢ Xe ( )
7.83

Let 7/ < s < T. Integrating from 7 to s

ko[ )
v —(k—1)u D 2 _ —(k—1)u
4/7,/)(6 Duft+ = | e (s)

T T 1 T
< C{/ /6(k+1)u+/ /e’““+ - / /e(kl)“}. (7.84)
T X T X T =TJr X
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We rearrange this inequality to obtain, for £ > 1,

s . T T T
/ / |D€—%u|2 + 2/ 6—ku(s) < Ck / / 6—(k+2)u +/ / e—(k-l—l)u + 1/ / 6—ku .
o JX X r JX r JX T—7Jr Jx

Since e™* < 4§ < 1, we have
/ / |De_“]2+2/X e k(s )<Ck{ }{/ / } (7.85)

Recall that we denote 8 = %5 = 2, 3* such that % + ﬂ% =1l,and y =1+ ﬂ% By the Sobolev

inequality

T 1/8 /B
T/ X X
1/B* T .
C sup </ e_k“> / {/ e_k“—l—/ ]De_2“|2}. (7.86)
te[r!,T) X 7! X X

Using estimate (7.85), we arrive at

(/j/xevku>1/7 < Ck{1+ 7/1_7}{/TT/X€M}_ (7.87)

Iterating with 7, = (1 — = +tD) 4 (n — 1),

/oK1 2k 1% ¢ T 1/+%
L) o )
Th+1 1_7 T JX

Note 7, > n — % Sending k — 0o, we have the C° estimate

IN

sup e < Clle™|[ L1 xxpn_217)- (7.89)
X x[n,T) 3
By Proposition 21, for n <T <n+ 1 and n > 1, we obtain
sup e < — (7.90)
X x[n,T] M’

Next, we consider the small time region [0,7] C [0, 1]. Integrating (7.82) from 0 to 0 < s < T, we

obtain

k [* 2 M (k1)
n —(k=1)u 2, <2 —(k=1)u ) < —(k+1)u
R R I A Ky e =

We rearrange this inequality to obtain, for & > 1,

s T T
/ / |De—§u|2 + 2/ e—k:u(s) < Ck‘{/ / e—(k+2)u _|_/ / e—(k—f—l)u + M_k}. (7‘91)
0 X X 0 X 0 X
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Since e™* < § < 1, we have

/OS/X|D6’;u,2+2/Xeku(s) gm:{ /OT/Xek“+Mk}~ (7.92)

As before, by the Sobolev inequality

T . 1" T !
/ / e FieT Y < O sup </ e_ku> / {/ ek +/ |De—2u|2}- (7.93)
0o Jx s€[0,T) X 0 X X

Combining this with (7.92) yields

( /0 ! /X e Tku +M‘””“> " < Ck{ /0 ' /X e~ ku +M—’f}. (7.94)

Iterating, we obtain the C” estimate
sup 67“ S CHGiuHLl(XX[O’T]) + CMil. (795)
X x[0,T]
By Proposition 21, for 0 < T < 1 we obtain

sup e “<CTM ' +CM1< < (7.96)
Xx[0,T) M

By combining (7.90) and (7.96), we conclude the proof of Proposition 22. Q.E.D.

Theorem 23. Suppose the flow exists for t € [0,T), and initially starts with ug = log M. There
exists My > 1 such that for all M > My, there holds

sup e* < CiM, sup e “< @, (7.97)
Xx[0,T) Xx[0,T) M

where Cy, Cy only depends on (X,®), p, u, .

Proof: By Proposition 20 and Proposition 22, the estimates hold as long as we stay in Ss.

Choose Mj such that

Cy &
<3 (7.98)

where recall ¢ is defined in (7.66). Then at ¢ = 0, we have e™"° < §, and the estimate is preserved

on [0,7). The theorem follows. Q.E.D.
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7.3 Evolution of the torsion

Before proceeding, we clearly state the conventions and notation that will be used for the maximum
principle estimates of Sections §4-6. All norms from this point on will be with respect to the evolving
metric w = e“w, unless denoted otherwise. We will write w = ig,;jdzj A dz*. We will use the Chern

connection of w to differentiate
ViV = 8Ve, ViV® = g*P94(g5, V7). (7.99)
The curvature of the metric w is
Ry;%s = —0k(9710955) = Ry — uj;0%5. (7.100)

The torsion tensor of the metric w is T%,,,; = Omgg; — 0;9g,, and since w has zero torsion, we may

compute

Tmj = gA’_{T;;mj = um6”j — uj . (7.101)
We note the following formulas for the torsion and Chern-Ricci curvature of the evolving metric
Ry = Rpj%a = —2up;, T; =T = —dju. (7.102)

Recall that |T|? refers to the norm of 7}, as noted in (7.17). We will often use the following

commutation formulas to exchange covariant derivatives
IV, Vil Vi= —Rp. PV, [V}, Vil Vi = —T*;VaV;. (7.103)
J

To handle the differentiation of the equation, we will rewrite the terms involving p in the flow (7.1).

Compute
—ai0d(e "p) = —ad'e “iddp + 2a'Re{e " idu A Ip}
+a’e "i00u A p — olie " Ou A Qu A p. (7.104)

We introduce the notation

. -7 — 5 2
—a'i00(e "p) = < —d'e"p, + a'e "Re{b,u;} + o/e_“ﬁjku,;j - o/e_“ﬁpqupﬁq> %, (7.105)
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where ¢,(z), b}(2), ¢ F(2) are defined one by one corresponding to the previous expression. We note
that 1, bi,, ﬁ’k are bounded in C* by constants depending only on the form p and the background

metric @. We also note that 7% is Hermitian since p is real. We may rewrite this expression as
2

(W —3u —3u i O/fu~'_ —3u ~pgr 7\ WY
—ai00(e "p) = <— a'e ", — a'e P Re{bTi} — e S Ry — dle”? quTqu>2. (7.106)
With all the introduced notation, we can write the flow (7.1) in the following way.
1 R Oé/ 3 ~pd O/ Ty 2 2
0ugt; = gy~ — 1P Rap + SoaliRics) + TP +I0030) gy (1107
where
v =~y — | QURe(BT} — o/ [T, Ty + i (7.108)

In the following, we will use ||2| to replace ||€2||, for simplicity, if there is no confusing of the

notation.

7.3.0.1 Torsion tensor
Using ||| = e™ and gg; = €"gg;, (7.107) implies the following evolution of [|£2]],
1 (R d . o

¢ log || = 2] <2 + EHQHSpquqp — T - ZUQ(ZRI%) —2? V). (7.109)

Using (7.15) and (7.109), we evolve
0Ty = 0;0log |
Vs (X R Ry — TP~ S oa(iRics) 22w )} (7110
Moz ™2 a» g T2 ‘ ‘

Using 0;|Q|| = ||2||T; and the definition of v (7.108), a straightforward computation gives

1 1 o .
0T, = 2||Q\{ - iTjR—i- ;T + ZTjag(szw)
1 OZ/ 3~ q 2 O/ . .
+§VjR + EHQH ,Op VjRQP - Vj‘T| — ZVjUQ(ZRICw) + Ej s (7.111)

where
By = 20/|90%,T; + 20 Q1 Re(b TN, + o/ |0 TRy T,
20 | P TT, — QT + o |2V,
+a'|QPRe{V;0,T;} + [ Q°Re{t,V,;Ti} + ‘;/!\Qll?’(vjﬁ”q)qu
ol [T,V Ty + o [T T+ T Ry

PV (7.112)
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Our reason for treating F; as an error term is that the C° estimate tells us that ||Q| = e™* < 1 if
we start the flow from a large enough constant log M. As we will see, the terms appearing in FE;

will only slightly perturb the coefficients of the leading terms in the proof of Theorem 24.

We need to express the highest order terms in (7.111) as the linearized operator acting on

torsion. First, we write the Ricci curvature in terms of the conformal factor

ViRg = —2V;V,Vu. (7.113)
Exchanging covariant derivatives
—2V,;V,Vou = —2V,V;V,u — 2T ,;V\V u. (7.114)
It follows from (7.102) that
V;jRgp = 2V, VTj + T Ry (7.115)

Hence

/
ViR~ SV jo(iRicy) + of 257V, By
/

= IRy + |V Ry — 0BV Ry
= 2FPIV,V;T; + FPT, Ry, (7.116)
where we introduced the notation
o087 = R g1 — RPT, (7.117)
and
FP1 = gPl 4 o/ ||QPpPT — 02/(}@1"7 — RP9). (7.118)

The tensor FP4 is Hermitian, and in Section §7.4 we will show that FP? stays close to gP? along the

flow. Substituting (7.116) into (7.111)

1 q 1 o -
atTj = 219 {quvpvqu - vj|T’2 - §TjR+ ZT]‘UQ(ZRICUJ)
1 _
+§quTAm~Rq,\ +T|T)* + Ej}. (7.119)

Before proceeding, let us discuss ob? and FP? using convenient coordinates. Suppose we work

at a point where the evolving metric g;; = d;; and Ry is diagonal. Let Al j= iER,;j. The function
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ag(Aij) maps a Hermitian endomorphism to the second elementary symmetric polynomial of its

eigenvalues. We are working in dimension n = 2, so o9(A* ;) is the product of the two eigenvalues

of A. Our operator o3(iRic,) defined in (7.20) is with respect to the evolving metric w, so denoting

Al = gikR,;j, we have o9(iRic,) = 09(A). We define 057 = a%fp g, It is well-known that
6‘?2121 = A%, 882’222 = A4, and 8‘?;’122 = 0 if A is diagonal. Then in our case,

11 _ p_ 22 p_ 12 21
oy = R3y, 05" =Ry, 03° =05 =0.

We obtain
Fli_l /Q3~1172/R_ F2§_1 /Q3~2§72/R_
=1+aQ|%p 5 fi22; =1+4+a9°p 5 it
Fli _ O/HQ||3:51§7 F2T :O/HQH?)ﬁQi'
7.3.0.2 Norm of the torsion

We will compute
O|T|? = 0 {g" TiT;}.
We have

Oél

= 5= 1 R o . . =
019" = —g" 9" Orgs, = ( + 5|!Q||3pquQp — - o2(iRic,) — T — ||| v) g7

2112 \ 2

Hence

HTI? = 2Re(5,T,T)

IT? (R o i o
210 Ry, ~ S oa(iRics) — TP — 92

+
2(1€2

Next, using the notation |W|%  =F Pq i WpiW 3,
FPIV, VTP = FPgIv, VT + FPGIT,N VT + VT3, + VT3,
= FPGIN N T + gIT RPNV N, T; + FPg9 TR, Ty
+|VT |5, + VT |3,
We introduce the notation Agp = F pqvpvq. We have shown
Ap|T|? = 2Re(ApT, T) + [VT |}, + [VT[3, + FPgIT, R, T,

qpJj
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Combining (7.119), (7.124), and (7.126), we obtain

1 _ - _
2 2 2 2 . 2
TP = M{Apm VTR, — [VT1, - 2Re{g VTP T}
1 o . - _
— S RITP + Joa(iRic,)|T|* + Re{FMg 7T, Rn Ty}
!
_ = 3 — [0 e
~FPIgIT Ry 2T + (T + 19177 Ry | TP
—||QH?yT|2u+2Re<E,T>}. (7.127)
7.3.0.3 Estimating the torsion

Theorem 24. There exists My > 1 such that all M > My have the following property. Start the

flow with a constant function ug = log M. If
|o/Ric,| <1076 (7.128)
along the flow, then there exists C3 > 0 depending only on (X,8), p, it and o, such that
C3
TP< =« 1. 7.129
TP <47 < (7.129)

Denote A =1+ %. We will study the test function

G =log|T|* — Alog||Q]|. (7.130)
Taking the time derivative gives us
| T|?

Computing using (7.15) and (7.118),

ArlogllQ] = FPV,T; = _FPR,,
= SR SRy + S0 PR,
_ %R _ O;,ag(iRicw) + 02"”9\3,3?%@. (7.132)
Therefore by (7.109)
drlog 2] = M{AF log 2] — [T + &z (iRic,) - ||Q|2u}. (7.133)
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Substituting (7.127) and (7.133) into (7.131), we have

VITPE VTR VTR,
T TR P |T|2

1

Re{g"7V,|T"T5}

/

1
—fR + g(IQ(Z'Ricw)

- ’T‘ZRe{FW gIT? i Rpp T}
/
- A PG R+ TP + ||Q||3ﬁ”‘7R* — [Py
T2 apj A ap
2
|T]2 Re(E,T) + A|T)? — —Aag(lecw) + A9 v } (7.134)

Let (p,to) be the point in X X [0,T] where G attains its maximum. Since we start the flow at ¢ =0
with a constant function uy = log M, the torsion is zero at the initial time. It follows that tg > O.
The following computation will be done at this point (p,tp), and we note that |T|> > 0 at (p,to).
The critical equation VG = 0 gives

Vi T|?
0= |’_]|’\2| — AT;. (7.135)
Using (7.16), this can be rewritten in the following way
7\T|2 = AT, — 7\T|2 = AT, — QITPQJ T; Ry, (7.136)

Therefore, by Cauchy-Schwarz and the critical equation,

VT3 (VT, T)|? Lk |
et = || e,
~ 2
= N T — — g]ijRkZ + s Re{FPIgA T Ry Ty}, (7.137)
AT T

Here we used the notation |V\% = FPiV,V;. We may also expand the following term using the

definition of FP4,
ANT|}, = FPgYRgR;, = [Ricy|” — g” Y RuR;, + o/ Qg7 IR R;,.  (7.138)

Set € = 1/100. Using (7.137) and (7.138), and the critical equation (7.135) once more on the first

and last term, we obtain

2 T2
VPR VT, (9T,
T T? T[? \T!2

Re{g" Vi|T*T;}

~ 2
g]ijRl’m'
F

< N - (- )N T~ (1-¢)

1
AT
1 |Ric, |? o

1—
i 1R ST

A
Re{ FPIg/* Ty Ry Ty} —

ij +Pa .
Qi 9" 0y Railtj,

3 ij ~pq _ 2
—4|T,2HQII 9" " Rgi R, — 2A|T". (7.139)
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Substituting this inequality into (7.134), our main inequality becomes

1 IVT|%, 1 |Ricy|? 2 22, _ 1
0,G < a1al {AFG— TE 4 TP —(A=D|T|" +eA*|T|F — iR
o . !
_Z(A — 1)og(iRicy,) + 8|T|29 ququRip + (1 —e)mm |T)2
%o A
‘T!2qu UTquJ L+ \TPRG{FM UT " 7)\T;}
S 2 121°9" 77 Ry Ry, *||QH P Bap
4|T‘4 v F 4|T|2

+(A = D)%y + WRe<E T>}

which holds at (p,tp). Next, we use (7.100) to write the evolving curvature as

This identity allows us to write

1 a
T )\T T )\T

Next, by (7.101), the torsion can be written as
T, = Tid, — T,0™,
SO we may rewrite

—=Re{FPIgUT , Ry\T5} = FPIRg, — = Re{FPigiRy;T:T,}.

!TP !Tl2

Together, we have

——qu Elp quJAT)\ + —=Re{FPg ZjT/\m q/\T}

|T? \TP
1 s 1
- TT‘QFW 9IT; Ry T + 2Fp TRy — |T‘2Re{qu 99 Ry T5T,)

1
= |T|2qu ”Tqu])‘TA—i— 1R 50 0a(iRicy)
+5HQH‘°’/3Mqu |T‘2Re{qu 9" R T5T, ).

We also compute

o

T = TP + o/ |QUPFTTT; — b T, T
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Substituting (7.145) and (7.146) in the main inequality (7.140), we see that the terms of order R

have cancelled.

1 \VT’%g 1 ]Rlcw|2 O\ 12

l /

o e - ;
—€A2§quTqu —(1+ A)Zag(lecw) 8|T|29 i qu(ﬁij
2
+(A —eA — 1) —=Re{FPg/*T; Ry Ty} — (1—¢) 9T R;
!TI2 P 4T e
1 i » ) ~pqr
|T’2qu GIT,R T — 4|T’2HQH3gjpququfp—i—aAQO/HQH?’quTqu
+d/[|QP P Ry + (A — 1)y + WRe<E T>} (7.147)
We now substitute A =1 + % and ¢ = 1—(1)0. Then
1 1 VT3 1 |Ric ]2 1 1 o
oG < — g _ o - Pq 2
= 2|]Q||{ 100 T2 4 |T)]? g!T < ) 100 2 72 P
17/ o s s
—— —03(iRic,, 081 R3i R;, —Re{FPg*T;R; T,
16 2 o3 (iRic,) + 8\T|29 03 g + < > T2 ef kp }
99 1 | .7 S | o
_ 27 |\JRT R 7}7?(1 ZJT /\T Q3 ij ~pq
400 |T‘4 g JRkJ’L . ‘T|2 quj A 4‘T|2H H g pp qu
+o/[|QPPI Ry + —— L (9 2a'HQH3ﬁqu T——l—lHQHQV%——Re(E T) (7.148)
® 700\ 8 LR 1T |2 '

We are assuming in the hypothesis of Theorem 24 that |o/Ric,| < 1075. By Theorem 23, we know

that [|Q| < % < 1, so for M large enough we can assume
(1-10"%¢"% < F9 < (1+107%)g". (7.149)

One way to see this inequality is by writing Fii in coordinates (7.121). Using (7.149), we can

estimate
_1205/‘72(%%) - 8I?129ijU§qqu‘ij T (51% N 830) el T3 Ry, Ty)
< %%|a/Rlcw| |Ricy,| + f\a Ricy,| ’R|;f|°;|2 + %|Ricw\
= (2)1(3)| fewl + 15 ’R|’irc\g|2
< e (1w mee) T 7150

147



CHAPTER 7. ANOMALY FLOW WITH FU-YAU ANSATZ

We also notice

9\* 1 o o1 , PR
— (= T,T; < |a'Ric||T|? < —|T 7.151
and
1 _
— WFW GIT R < Ce™ = C||. (7.152)
Substituting these estimates into (7.148) gives
1 1L |VT> 1 Ricof* 1
G < —<A — ——|T
o= ZHQH{ Y200 T2 T 100 |T)2 100/ !
+C|2 + 4,T|2 192]1g" 77 Rgi Ry, + o/ [ QU777 Ry
+i ) o/||Q|]3ﬁp‘7T T; + 1|yQ||2y+ ——Re(E,T) 3. (7.153)
100 \ 8 L |T|2 ‘

By the definition of E (7.112) and v (7.108), the terms on the last two lines can only slightly
perturb the coefficients of the first line since ||Q| = e™ < % < 1 for M > 1 large enough. We

recall that pP? and bz are bounded in C'*° in terms of the background metric g, so for example,
120177 < CemgT = Cg™?, (|6, T3] < OIT. (7.154)

This allows us to bound certain terms such as

|Ricy,|?
T2

C
o/|Q)* " Rgp < C[I QU Ric| < *HQH2 + S Il (7.155)

and
¢

5 1922 (7.156)

o Re(tT3) < ClIIT] < P+

Covariant derivatives with respect to the evolving metric act like V; = 9; — T}, so we can bound
terms such as

2 o
|T[? 2

|Ricy,|
T

|Ricy,|
T

S Q1P (V557 Ry Ty, < 01 +Cl9? 7. (7.157)

The inequality 2ab < a? + b? can be used to absorb terms into the first line. We also bound terms

272
7|

‘QHQH 20V, il < O (7.158)

|T
Using these estimates, it is possible to show that at the maximum point (p,tg) of G, for ||Q| <
% < 1, there holds

o< L ape— Lrpscpay(ns 1907 (7.159)
=20 7T 200 T ‘ ‘
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By (7.149), ApG < 0 at the maximum (p, tg) of G, hence

Therefore

By Theorem 23,

This proves Theorem 24.

ik

C
2 < < . 1
T = clell < 7 (7.160)
C
G < G(p,to) < logM + Au(p). (7.161)
< < exp{Alulp) ~ )
i Xp p
c A A
< ( sup e“) ( sup e“>
M\ xxp01) Xx[0,T)
< Q(CQCI)A < 1. (7.162)

M

7.4 Evolution of the curvature

7.4.0.1 Ricci curvature

In this subsection, we flow the Ricci curvature of the evolving Hermitian metric e*§. We will use

the well-known general formula for the evolution of the curvature tensor

O Ry = =V V(9% 0g4p)-

(7.163)

Recall that we defined Ry; = Ry;%, hence substituting (7.107) yields

8,5R,‘€j = —VEVJ'{

L
2(j€2]

<_

/
R—d||Q|?P1Rg, + %az(iRicw) + 2|7 + 2|ym|2y> } (7.164)
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Expanding out terms gives

1 . o

LRI Ry + 0!V (| TV Ry
LV ([P Ry V;;Vj2|!QII2V}

‘Z\T}’zﬁl‘ w{m o (|11 Rap) — O;az@Ricw) - 2T - 2”9”2”}
‘Zﬁs"zﬂ vj{R+ o/ (I1I1°7 Rgp) — O;ag(iRicm = 2T} - 2”9”2”}
(R = o,
—C;/ag(iRicw) — 2T - 2HQ|!2V}- (7.165)
Using V|2 = |27,
O Ry = M{vkvjm o | QP FIVEV Ry — Vmoglw(iRij)

—2ViV|TP + o' Vi(IQUP TV Rep + oV (1Q1P 7)) Vi Rep

+0/ ViV (177 Ry — 2V, { Qv } = T,ViR

T R(IU P Rey) + AT VHT + TV (oa(iRic) + 20,9 {2}

TRV, R - T (|2 7 Rey) + 29T + ST, (o (iRic)

219, { 1902} + RI;T; + o/ TIT(191° 7 Rgy) — 2/TPTS T

L oaiRic )Ty — 20T { |} — RYRT, - o Vi (1907 Rey)

F2ATPVLT) + O;,ag(iRicw)Vij + zvaj{HQH%}}. (7.166)
We now study the highest order terms, namely

ViViRg, = =2V V,;V,Vau. (7.167)

We will use the following commutation formula for covariant derivatives in Hermitian geometry

ViViVpVeu = VyViV;Viu+ T, VVaViu + T2 3V, V; Vsu

+ R gy — Ry us, + T T s, (7.168)
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Using Rz, = —2ugp, we obtain

ViViReyp = VpVeRp;+ T)\pjvq’RlE)\ + T)\ql'cvaS\j

+Ri pRay — Reyi Ry + T i T R - (7.169)

Hence
q g )
ViVilt = gMVyVaRy; + g"T VR + 9717 . Vp Ry
+R P Rgy — R 17 Ry, + ¢"T 517y, R, (7.170)
Differentiating 47 (7.117) leads to the following definition
ohTTS = gPigrs — ghigr. (7.171)
With this notation, we now differentiate o2 (iRic,,) twice.
ViV,oa(iRic,) = Vi(057V;Rg)
= 03'ViVRep + 08" ViRV Ry
= o}V, ViRy; + 05" ViR,V Ry, + 05717,V Ry
+o gqf;\qupRij + ngR;;j/\qu/\ - ququES\Rij
+oBITA TRy, (7.172)
By (7.170) and (7.172), and proceeding similarly for the p term, we obtain
/
S a .
ViV,;R+d||Q)?FIVEV i Ry — Ev,;vm(zmcw)
/
_ o - _ __5
= PPV, VaRy; — 5 o8 ViRs V;Rep + FPIT? iV aRiy + FPTA 2V, R5
+FPIR A Ray — FPIR 1 Ry + FPIT? ;. T7 ) Ry, (7.173)
where the definition of FP? was given in (7.118).
Using (7.16), we may convert derivatives of torsion V7 into curvature terms, but terms VT are

of different type and must be treated separately. For example
_ _ _ 1 _
—2V,5Vj|T\2 = —2¢"ViV,T,T5 — 297V ; T, Vil — §gqu,;quj — ¢"T, Vi Rgj
= —g"'V; Ry, Ty — 20" Ry, TNT; — 2977V, T,V T,

1. )
— 59" Bplg; — g™ I Vi Rg;. (7.174)
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Substituting (7.173) and (7.174) into (7.166),
/
{quvpqukj -5

ob " VR Vi Ry
2||QH 2 k J+4ap

120/ QPP TV Ty — 2077V T,V Ty + y,-w}. (7.175)

where Yz, contains various combinations of torsion and curvature terms, but is linear in first
derivatives of curvature and torsion and does not contain higher order derivatives of curvature and

torsion. Explicitly,

Yi:

g arpX dp- A q A
y FPIT, N aRpy + FPIT q,;VpR;\j —+—qung]~ pRan — FPIR, ¢ R;\j

apk
_ _ _ _ 1 .
HFPIT? 2T Ry — 9PV Ry Ty — 29" Ry T Ty — 59" By R
T, ViRy + o V(| QP )V Ry + V(1157 Vi Ry,
0/ (VY |77 Ry — Ty PPV Rgy — o Ty Vi (|00 7#7) Ry + 97T R, Ty
_ _ a/ i
2P - 2 - VT (1000 - GRe(IR, e
—a/Re{|92*4} R, M Th} — o/ Re{ Vi (1I2]*6)) v, 1}
—a/Re{ V(| 2*6}) ViT} — o/ Re{ V5V, (| 2°b, ) Ti} + vkwmm}
+{2a’(Vx;VjIIQH3ﬁp‘7)Tqu + 20/ V(|12 (T, Ty)
+20/ V([P VT, Ty) + o QI 77V B, Ty + 20| Q0 77 B TN T
. o .
PP R + 101 R s |
+2ij1;{ - [9)y, - o |QIPRe{B, T} - o | QP FITT; + ||Q|r2ﬂ}
~TRFPIV Ry — o/ TV (|5 Ry + 20" Ty 1Ty + T Ty Ry
+2Tkvj{ — 9]y, - o |QIPRe{B T} - o |QIF LT, + ||ﬂ||2a}
/
+RIT; + o/ TyTi(| Q17 Rep) — 2T LT — Soa(iRic,) 1T
—2%{ — 90, — o/ |QIPRe{B, T} — o | QUL T + HQH?@}
1 Oé, 3,, q 2 a/ . .
—5 BBy — 5 Ry (172" Rgp) + [T R + o2 (iRicw) Ry,
+Rkj{ — a9, — o IQIPRe{B, T} — o | QI FIT, T + HQW}. (7.176)

The terms in brackets indicate terms which come from substituting the definition of v (7.108).
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7.4.0.2 Evolving the norm of the curvature

We will compute

di|Rico,|? = 0,{g" 9" Ry Ry ). (7.177)
We have
097 = —g*g oy,
= (e, - CosiRicy) - (TP - [9)P) 7. (1.078)
~ oo\2 "2 ap Ty o2 g '
Hence

d|Ric,|* = 2Re(d;Ricy, Ricy)
|Ric,,|?
219

/

<R +d||1Q? PRy — %og(iRicw) —2|T)? - 2||Q? y>. (7.179)

+
Next,

quVqu\Ricw\Q = gkzgﬁquvpquZiRjk + gkzginZinqvpqujk
+|VRicy |3y + [VRiCw [T
= gMg TPV, VR Ry + 9" 97 R FPV Ry
— 9" 9" Ry FPT Ry, N Rsy + ¢M g7 Ry FPT Ry, Ry,

+|VRicy |7y + [VRicy|Fyy- (7.180)
We have shown

ApRicy* = 2Re(ApRic,, Ricy) + [VRicy|Fgy + [VRicw[7gq

— 9" 4" Ry FP Ry Ry + *'g" Ry FPI R Ry, (7.181)
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Substituting (7.175) into (7.179) gives

O|Ric, | = 2||19H {AF|RICW|2 [VRic, |74y — [VRicy|Fy, (7.182)
—a/Re{g/' g™ PV R, ViRsV,Rap}
+4a'Re{g" g"* Ry,, | QP71 T, Vi Ty}
—4Re{g"'g"* Ry, g" 1V T,V T3} + 2Re{g’'g™" Ry, Vi }
+g* gl Ry FPTR, AN Rsy — g g Ry, FPIR 2 Ry, + [Ricu[*R
/|| Q2 77 Ry | Rico|? — 2T 2| Ricy|? — %Ug(iRicw)\Ricw\Q

—2/19?|Ricy, |2 u}.
7.4.0.3 Estimating Ricci curvature
Lemma 12. Let 0 < §,e < § be such that —gP7 < o/§%||Q||pP7 < 1P, and
19> <6, |T)? <6, |&/Ric,|<e, (7.183)
at a point (p,to). Let A > 1 be any constant. Then at (p,to) there holds

Bt(\a’Ricw\Q —i—A]T\Q)

1 1
< Ap(lo/Ricy|* + AT ( - 25) o'VRic,|?
s { Ar(la'Ric? + AJTE) = (5 - 2¢ ) o' TRic|
- (2 —(5+ 052)a|o/\—1> VT - %\Rich +C(14A)ed + Ce* + CA(S}, (7.184)

for some constant C only depending on p, p, ', and the background manifold (X, ).

Proof: Since € and § are assumed to be small, we have

_ _ - 1 - I
PP = T+ T~ G T < < S (7159
We note the following estimate

— o/Re{g/'g" ¥ R; ViRsV,;Rzp} < |o/Ricy| |[VRicy|?. (7.186)

We will estimate and group terms in (7.182) and (7.176). We will convert F?7 into the metric gP?,
and handle pP7 and b° as in (7.154). We will also use that the norm of the full torsion T(¢) = i0¢
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is 2|72, Vi||Ql| = QT VEVillQll = 1Q T + 271 |Q]| Ry, and (1] < 1.

1 1—
O|Ric,|*? < 2”QH{AF|RICW|2 —\VRicw\2—§|VRicw|2 (7.187)

+]a'Ricy || VRicy|? + (4 + C!QHQ)]RicwHVT]Q}

C
QHQH {IT\IRlcw||VRlcw| + |2(1 + |T])|Ric,,||VRicy|
+(|Ricy| + [Rico)|T]2VT| + |Rm|[Ricy|? + |Rm||Ric||T)?
+Ricy[*|T* + [Rico||T1* + [Ricy[*(IT] + 1)* + [Ric,[*

+120%[Ricy |(IT| + D)*(|Ricy| + |Rm| + |VT| + 1)}.

First, we estimate

02
C(|Ricy,| + [Rice[2)|T)?|VT| < [Ric,||VT|* + 7|Ricw|(1 + [Ric,|)?|T)*. (7.188)
1
C|T||Ric,||VRic,,| < §|a’Ricw|\VRicw\2 2| ] |Rlcw||T\2 (7.189)
We may estimate, using |T'| < 1,
2 4 2 2 02 8 2
CllQ" Rico| (IT] + 1)7VT| < |27 [Ricy|[VT| +7(2) 1927 Ricy|, (7.190)
1
C||Q*(1 4 |T])|Ricy||VRic,| < 5\O/RicwHVRich 2o ,|(20\|Q|| )2|Ric,|. (7.191)
Recall that
a D_ 1
Rkj 8= R;;;j g+ §R7§j. (7.192)

Hence, using ||| < 1, |T| <1 and |o/Ricy| < 1 on lower order terms, from (7.187) and the above

estimates, we get

1 1
¢ |Ric,|? QHQH{AF’RI%P (2 —Q\Q’Ricw\>\VRicw\2—|—(5+CHQH2)\RijHVT]2}
C . . .
+2||QH{|RICUJ”T|2 + |Ricy, |2 + HQ||2|Rlcw|}. (7.193)

In terms of 0 < &, < 1, we have

1 1
Ric 12 < e 12 (2 IoRia |2
O |o'Ricy,|© < 2HQH{AF]aR1(:w] (2 25)]04VR1%]
+(5 4 C6He|o | HVT|> + Co e + 052}. (7.194)
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Using the evolution of the torsion (7.127)

]. ]_ . . — —_ —_
aT)> = ST {AF]T|2 VT, — flecwy%g — 2Re{g" g"V T, T;T5}
_ _ _ /
—Re{g" ¢ T, RiT5} — 7R|T|2 —Jg(lecw)|T|2
+Re{FPIgITA, R\Ts} — FPIgIT,(Ry:* + Rgpd)) T + | T

o o
+ G IO F R T ~ TPy + 2Re(E,T) (7.105)

Estimating by replacing FP? by the evolving metric gP9,

1
HT)? < STOT] {AF|T|2 — 7|VT|2 — —|Rlcw|2 + 2|VT||T|* + C|Ric,||T|?
o] s
+R||IT + T\wa!Q!T\Q + || Rmlg|TI? + |T|*
+C|1Q2(T)* + |T]? + |T> + |T))(1 + |Ric,| + !VT|)}. (7.196)
Estimate
1
2/VT||T|* < g|VT|2 + 8|7, (7.197)
and
ClQUP(T* + TP + |T]> + |T)IVT| < < !VT\2+202HQH (4)%. (7.198)
Using 0 < d,¢e < 1,
1
o|T)? < 2] {AF IT)? — f\VTIZ — 7\R1cw\2 + Ced + Ca}. (7.199)

Combining (7.194) and (7.199), we obtain the desired estimate.

Theorem 25. Start the flow with a constant function ug = log M. There exists Mg > 1 such that
for every M > My, if

C? Cs
l* < & 1T < 77, (7.200)
along the flow, then
C
|a/Ric,| < M15/2, (7.201)

where Cy only depends on (X, &), p, i and o'. Here, Cy and C3 are the constants given in Theorems

23 and 24 respectively.
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Proof: Denote
1 Cs

“=ane 0T ar

(7.202)

Let C4 denote the largest of the constants C' on the right-hand side of (7.184). For M, large

enough, we can simultaneously satisfy the hypothesis of Lemma 12, and the inequalities 2e < %

and (5 + C46%)e < 1. We will study the evolution equation of
|o/Ricy,|* + A|T)?,
where A is a constant given by
A = max{4|d/|7, 8/|?(Cs + 1) }.

With this choice of A and M, we have

(; - 2&7) >0, (2 -5+ C452)5|0/]_1) > 0.

At t =0, ug = log M and it follows that
o?|Ricy|* + AIT|* = 0.
Suppose that along the flow, we reach
o?|Ricy|? + A|T|? = (2AC3 + 1)€?,

at some point p € X at a first time tg > 0. By Lemma 12,
1

A
By(|o/Ricy|? + AIT?) < {8|Ricw\2+04(1+A)56+C’452+C4A6}.

2/|€|
At (p,to), we have

|o/Ricy|? = (2AC5 + 1)e? — A|T|> > (2AC3 + 1) — AS.

Thus

(7.203)

(7.204)

(7.205)

(7.206)

(7.207)

(7.208)

(7.209)

1 2
dr(|a'Ricy|* + A|T)? { A o + Cye? — A7(20352 — ) + C4Ad + Cy(1 + A)eé}.

< _
)< 3aI 8ol SR

After substituting the definition of € and 9, we obtain

1 A 1
O (|a'Ricy | + A[TP?) < - ~Cy)— (>3 -C
(o + ) < g~ (gam — ) 37 - (s

1 1
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By our choice of A (7.204), for My > 1 depending only on (X, 3), &/, u, p, for all M > My we have

at (p,to)

O(|a/Ric,|* + A|T)?) < 0. (7.211)
Hence along the flow, there holds
|a/Ricy|* + A|T)? < (2AC3 + 1)2. (7.212)
It follows that
la'Ric,| < (2ACs + 1)Y/2%¢ (7.213)

is preserved along the flow.

7.5 Higher order estimates

7.5.0.1 The evolution of derivatives of torsion
7.5.0.2 Covariant derivative of torsion

Since Vi1 = %R,;j, we only need to look at V,T;. We will compute
VT = V,0,T; — TN T (7.214)

First, using the standard formula for the evolution of the Christoffel symbols and (7.1), we compute

oIy = gMVidgg;
]. R O/ 3~ q 2 O/ 2 N / 2 A
= V; 72”9” —5 = EHQH PP Rgp + T + ZUQ(szw) +a'||Q"v ) 67
1 1 o _ o - _ _
— — ZV.R— —I0IP"IV,. R-. + — oPIV. R- PIN7 T T-
QHQH{ 2V2R 5 192]]°677V i Rgp + 4 oy ViR + g™V T, T5
1 = R 2 Oél . A
—|—§gququ¢ + ETz —|T)°T; — Zag(lecw)Ti —E; ; 0%, (7.215)
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We recall that the definition of E; is given in (7.112). Using (7.119)

1

0 ViT} —
’ 2(j€2]

_ 1 ! 1
Vi{quVquTj — Vj|T‘2 — ETJR + %TjO’g(iRij) + QquT)\ijqA

2[€

+Tj’T‘2+EJ‘}+Vz‘{ 5

) ) 1
}{quVquTj — gMVT T — 59" T, Ry

1 o . J R
_§TJR + ZTjU2(ZR1Cw) + §quT/\ijq—,\ + T T + Ej}

1 - _ _ 1 .
—THQH { — quVqu{Fi + gquiTqu + 5!]ququ¢
R 9 o
+§Ti — |T|*T; — Zag(lecw)Ti — E; ;T;. (7.216)

First, we may rewrite
_ 1
FPiv, VTl = §quVquj. (7.217)
Next,
I —
VPRV, = PV, 4 VI - G ol ) 9,94,

= FPIV,ViVTj + FPT VoVl + o/ Vi(|QIP 1)V, VT
Oé/
——0C
2
= FPIV,V;V,Tj — FPIV,(R;:*Ty\) + FPIT* iV ARy

IS, Rey VYT

o ~pq o q,rS
+5Vz‘(||QH3qu)VPqu =502 Vil VyRy;. (7.218)

We also compute

ViVIT? = ¢"IV, VT, + g*IN T,V Ty + gPIV T,V ;T + P T,V VT,

_ _ 1 - 1 - | -
= gquiVijTq + igquijqu + §gquiTquj + §gqupVquj. (7.219)

We introduce the notation £, which denotes any combination of terms involving only Rm, T, g,
19]], &, p and pu, as well as any derivatives of p and pu. Note that FP? is an element of £. The
notation x refers to a contraction using the evolving metric g. The notation DE denotes any term
which is a covariant derivative of a term in £. For example, the group D& contains terms involving
VT, VT, and VRic,,. Substituting (7.217), (7.218), (7.219) gives

Oé/

1
OViT; = {AFviTj— 0

212
Here we also used that V,;E; = VVT x £ 4+ DE x £ 4+ £ which can be verified from the definition of
E; given in (7.112)

qu’TgviRgrvaqj L VVT *E+DE*E + 8}. (7.220)
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7.5.0.3 Norm of covariant derivative of torsion

We will compute

OV T = 0,9 ¢*'V T, V515 (7.221)
As in (7.124), we have

XVT|? = 2Re(0,VT,VT)

VT2 (R o o -
_ — 1| 9p_

/

+2

o9 (iRicy) — |T? — |19 y). (7.222)
Next,

Ap|VT|? FPgi o0 Y oV TV T + 7 gF N T FN N VT

PG RO TV V5 Ty + FP g gF N VTV, V5T
= 2Re(ApVT,VT) + g g"V, T, FPIR, - V5 T;

+g I g T PR AT + [V T |3y, + FPgU ¢V, T,V , V5T

apt

The last term can be written as a norm of VRic,, plus commutator terms. Explicitly,

FPigi g VTV, V5T = FPgl gtV TV VT + FPgi g Ry TAV V3T,

= PP gty v TN T + FPg gty v TkRm,Z

+qugw Ig" R T\V;V Tf + PP oM RN TR T

= qug”g’“fv RV Rpt + qug” I ¥V Rgg, R, T

+— qugZ]gk‘qul k;T)\V pr + qugljgk‘équ kT)\R]pg T

(7.223)
Hence
1
AF|VT‘2 = 2Re(ApVT,VT) + |VVT|%gg + 7|VR1CW|%‘99
+g”gkev TR Ry, )‘V,\Tz + 974"V, TkaqqufkvaZ\
qugwgkfv quR]pz Ts + §qugwgk£Rzﬁ ka\ijZp
+qug’l]gk?£Rq7, k;T)\R]pg ;\ (7224)
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Therefore, by (7.220), (7.222) and (7.224),
1 1
2 _ 2 2 L2
at|VT| = 2||52||{AF|VT’ — ‘VVT|Fgg — Z|VR’ICW|FQQ
o ij kl _pgqrs o=
— Re{g" 9" ob ViRV, Rg VT + VVT « VT # €

—l—DS*DS*S—I—DS*E—i—S}. (7.225)
7.5.0.4 The evolution of derivatives of curvature

7.5.0.5 Derivative of Ricci curvature

We will compute

OV iRy; = Vi0iRy; — 0,0 Ry, (7.226)
Using (7.175) and (7.215), we obtain
1 q O/ q,rSs
OVRy; = M{vi(quvpqu,;j) — S ViloB VRV Rep)

+(2¢P7 + 2/ || Q]2 P) %« VVT %« VT + DDE % €

—i—DS*DS*E—i—DS*S—I—E}. (7.227)

Here, we used that VVT = VRic, + Rm * T. Compute

/

_ _ o o .
Vi(FPIV,VaRy;) = FPIViV, VR + o' Vi([9QI1P#7)V,VaRy; — Evi(ogq)VquR,;j

= FPV,V;VqRy; + FMT%,;V\VqRy,

Oé/

+a' V(|| PV, Vg Ry — 5 b ViRV, V Ry
= PPV, VViRy; + FPV, Ry Ry — Rai™ i Riy)
+FPITA VAV Ry, + o/ Vi([|Q)° 5"V, Ve Ry,
—O;agq“viRsrvpqu,;j. (7.228)
Hence, using that V;o5%" = 0 (7.171), we obtain
1 o irs
ViR = 3l {AFVZR,W- Y VeV Ry

r r
—%agqusv,;Rgrviijgp - %agq’”viRgrvpqu,;j
+(2¢P7 4 2¢/|Q]2P7) %« VVT % VT

+DD5*5+D5*D5*S—|—D€*€+E}. (7.229)
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7.5.0.6 Norm of derivative of Ricci curvature

We will compute

| VRic,,|? = 0{g"¢" ¢"°V Ry, Vo Ry, ). (7.230)
As in (7.124), we have

01| VRic, | = 2Re<8tVRicw,VRicw>

/

+3|VRicy, |* =~ R gIHQHSﬁqu— — & oy(iRicy) — [T — Q)2 v ).
2||Q|| 2 1wy

Next, compute

Ap|VRic,|? = FPlgighgm™y oV, RN Rimg + 6 6" 9"V Rup FIPN 5N oV R
+|VVRiCy[Fg00 + [V VRiCH| Fgg
= 2Re(ApVRic,, VRic,) + [VVRic, |30 + [V VRiCH| F4g
FFPIg g g7 Ry R S Vs Ry, + FPg1 gt gmﬁviRﬁqungij;m

— FPgi g g R Rap V3 Ry (7.231)

Commuting covariant derivatives

|VVR10W|Fggg |VVR1cw|Fggg +VVExE+E. (7.232)
Hence
1 _
2 2 -2 <2
0| VRic,|* = 2”QH {AF]VRlcw] ]VVRlcw\Fggg — |VVR1Cw|Fggg}

1 -
+2HQH2RQ{ B Egmgbkgjcffgq’mVz‘kaﬁrvjquvaRBc

2 gw gbk §°ob YV Rs.V;V j Ry Vo By,

ia bk jé ,T'8 <~ .
-3 S g gt Ry V1,V o R Vo R,
+(29P7 + 20/ (|2 5P9) * VVT % VT * VRicw}
+DDE « DE « E + DDE x £ + DE « DE « DE x £

+DE +« DE*E + DE * E. (7.233)
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Lemma 13. Suppose |a/Ric,| < § and —3gP7 < o |77 < §gP7. Then
9| VRic,[* < 1 Ap|VRic,|? — 1|VVRic 2 - }]VvRic 2
1
+2”QH{9a’2|VRij|4 + 5|VVT||VT||VRic,|
+DDE « DE « € + (DE + 5)3}. (7.234)
Proof: By assumption, we may use

_ 3 _
[VVRiCy |7ggq + [VVRIC|F 40 > 1(|VVRicw|2 + |[VVRic,|?). (7.235)

In coordinates where the evolving metric g is the identity, we have 0_15(},7“5 = +1. Using 2ab < a®+b?,

estimate (7.234) follows from (7.233).

7.5.0.7 Higher order estimates

Theorem 26. There exists 0 < 1,09 with the following property. Suppose

— T <P < LT, 0] <1, (7.236)
|a'Ric,| < 41, (7.237)
and
IT|? < 6, (7.238)
along the flow. Then
|VRic,| < C, |VT|<C, (7.239)

where C' depends only on d1, d2, &/, p, p, and (X, ).

Proof: Let us assume that §; < %. This will allow us to use the estimate

3 7
10 < P < 2gy,. (7.240)

This follows from the definition of F7*, see (7.121). From (7.182), with assumptions (7.237) and

(7.240) we may estimate

: 1 , 1.
O|Ric,|* < 3 {AF]RlcwIQ — Q\VRlcw\Q}
1
—I—2HQ‘Re{DS*S—I—5VT*VT*Ric+5}. (7.241)
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Here we used
— o/Re{g/' g™ o R; ViRV, Rap} < 61| VRic,|?, (7.242)
to absorb this term into the —|VRic,|? term. We will compute the evolution of
G = (|o/Ricy|* + 71)|VRic,|* + (|T|? + =) |VT|?, (7.243)
where 7 and 7o are constants to be determined. First, we compute
Oi{(|o/Ricy|? + 11)|VRicy,[*} = a2 |Ric, |?|VRic,|? + (|a/Ricy|* 4 71)0:| VRicy | (7.244)
By (7.234) and (7.241)

6715{(|0/Ricw|2 + T1)|VRij|2}

! {A o/ Ric,| | VRicy |2 al2]VRic 14}
TR F w w| T o w
29 2

IN

_|_

1
2||Q”Re{D5 %« & +5VT « VT « Ric + 5}0/2|VRicw|2

(|o/Ricy|? + m1)
2]182]]
(|o/Ricy|? + 1)
2]1€2]]

1 1
{AF|VRicw|2 — 5yVVRicw\? — 2|VVRicw|2}

{9a’2|VRicw|4 + 5|VVT||VT||VRic,|
+VVE * DE x E 4+ VVE * DE x € + (DE + 5)3}. (7.245)
Hence

8t{(\o/Ricw\2 + Tl)\VRicw\Q}
1
219

1 1
—§]VVRicw]2(]a'Ricw]2 +7)— 5|VVRicw|2(|0/Ricw|2 +71)

IN

1
{AF{(\O/Rij\Q + 71)|VRicy, |*} — (2 — 9|/Ric,,|* — 971>a'2]VRicw]4

—2Re {Fijvi]o/Ricw]2V3|VRicw|2} +6(67 + 7)|VVT||VT| |VRicw|}

a’?|VRic,, |?
2|9
(|o/Ric, |2 + 1)
2121

Re{5VT*VT*Ric+DS*8+€}

{vvg*pg*5+vvg*pg*g+(D5+5)3}. (7.246)
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We estimate

—2Re {FUV;|a/Ric,,|*V;|VRic,|?}

IN

8|61 | VRic, |?(|VVRic, | + [VVRicy| + &)
12

—|VRic,|* + 286%(|VVRic, |2 + |[VVRic,|?) + C|VRic, %, 7.247
24

IN

6(67 + ) |VVT||VT||VRicy|

1
5(5% +71)|VVT|? + 2'3%(6? + 71)|VT|?|VRic,, |*

1 2
< SOPHm)IVVIP G [VRi|! + 2'8%/ 260 4+ ) VI, (7.24)
/2 : 2
WRe{5VT* VT*Ric+V5*5—|—5}
1 12
< Q,QH{(;IVP&CWI‘l + 225252 VT|* + C|VRic,|® + C|VT|? + C}. (7.249)

(Jo/Ricy|? + 1)

{VVS*DS*S+VVS*DS*S+(D5+8)3}

21
< 2|’1§2H{i|VVRicw|2(|a/Ricw|2 +7)+ i\vvRij\z(\a'Ricw\z )
Therefore
di{(|a'Ricy | + 11)|VRicy|*} (7.251)
< QHEI{AF{(‘a/Rij‘Q +71)|VRicy|?} — (i — 952 — 97_1>a/2‘VRij‘4

—(|VVRicy,|? + !VVRicw\Q)(% — 2862) 4 (82 4+ )| VV T
+ (24340/—2(5% +71)? + 22525%> IVT* 4 Co 15| VRiC, > 4 Cur 5| VT + ca,m;}.
Next, we compute
O{(T > + )| VT |2} = 0| T)2|VT > + (|T|* 4 )0, VT)?. (7.252)
By (7.127), we have

1
oT? < 2HQH{AF|T|2 — VT3, + CIVT| + C}. (7.253)
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By (7.225), we have

1
2 < T 2 2 / : 2
IVT? < 2”QH{AFN = [VVT [}, + /|| VT||VRic,,|
+C|VVT||VT| + C|VT|? + C|VRic,|* + C}. (7.254)

By our assumption |a/Ric,| < 1, we have ]VVT@QQ > 1|VVT|? and \VT|%g > 1|VT|%. Therefore

OA(IT1 + ) VT *}
b
2(|€2f

IN

{AF{(|T|2 + ) |VT)?} — 2Re{F’5VZ-\T|2V5|VT|2}
1 1
—1|VT]4 — (T + TQ)ZNVTF + C|VRicy, > + C|VT|? + C}. (7.255)

Here we used Young’s inequality |[VT||VRicy,|? < 3|VT|? + 2|VRic,|. In the following, we will

use that VT can be expressed as Ricci curvature. We estimate

—2Re{FUV,|T|>V;|VT*}

IN

AT||VT|(IVT| + VT (|VVT| + |[VVT|)

A

AIT||IVT2|VVT| + 4|T||VT*| VRicy| 4 4|T||VT||Ric,||[VVT]|

+4|T||VT||Ricy, || VRicy| + 4|T||VT|(|VT| + |VT))|R + T). (7.256)
We may estimate the first term in the following way
A|T||VTPIVVT| < 4VT]2(5:) /2 VVT| < %IVTF‘ + 256,|VVT)?. (7.257)
The other terms may be estimated using Young’s inequality, and we can derive
“9Re{FIV,|TI2V;|VT?} < 2—13|VT\4 + 255,|VVTP + CIVT]? + C|VRic, P + C.

Hence

1 1
TP+ mIVTF) < g Ar((TP + mvT?) - gV

—(% —295,)|VVT)? + C|VRic, > + C|VT? + 0}. (7.258)

166



CHAPTER 7. ANOMALY FLOW WITH FU-YAU ANSATZ

Combining (7.251) and (7.258) gives

1 1
< _— A —_ —_ — 2 — 2 1 W 4
oG < 2HQH{ rG (4 967 971>a |VRic,|

T2

_ <71 - 285%) (IVVRic,[* 4+ [VVRic,|*) — < 1

1 2652 - (5% - 7'1) IVVT|2

— (; —213%/ 2 (6} + 1)? — 22525%> vt
+Cat r,5|VRiCw[* + Cor 5| VT|? + Co/,T,é}- (7.259)

We may choose 71 = min{277,275372|c/|} and 7 = 1. Then for any 1, do > 0 such that
01,00 <2701 < =1, (7.260)

we have the estimate

1 1 1
0,G < ——2 ApG — =a?|VRicy|* — = |VT|* + Co 15 ¢. 7.261
16 < ] ArG = gaPIVRicy|* = {0 IVTI1 4 o (7.261)

Now, suppose G attains its maximum at a point (z,t) where ¢ > 0. From the above estimate, at
this point we have

%aﬂyvmew# + 1—16|VT|4 < Cyrs (7.262)
It follows that G is uniformly bounded along the flow, and hence
|VRic,| < C, |VT|<C, (7.263)
along the flow.

Corollary 1. There exists 0 < 1, d2 with the following property. Suppose

1 - -1 -
- ggpq < d|QIP < ggm, (7.264)
o/ Ric,| < 61, (7.265)
and
IT|? < 6, (7.266)

along the flow. If there exists o > 0 such that 0 < oy < ||| < 1 along the flow, then
|D*Ric, | < C, |D*T|<C, (7.267)

where C' depends only on &y, 01, 02, &, p, p, and (X,D).
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Proof: Since ||| = e™", we are assuming that |u| stays bounded, and that the metrics § and
g = €e%g are equivalent. We are also assuming that e‘“|Du!§ < 1 and e “|a/ug;l; < 1. By
Theorem 26, there exists §; and dy such that |[VVu| and |[VVVu| stay bounded along the flow. We

will estimate partial derivatives in coordinate charts. Since
0;0;0ku = V;V;Viu + gy, 0:05u = ViVju+Tjuy, (7.268)
and the Christoffel symbol
T = e 90 (e"grr) = wid™ g + T (7.269)
stays bounded, we have that
lu|, [Ou|, |00u|, |00u|, [000u| < C. (7.270)
The scalar equation is
o = Apu + /e 2" pPlug, + o/ e "o (i0du) + |Dul? + e “v. (7.271)
where v(z,u, Du). Differentiating once gives
0iDu = FP Dug, + o/ D(e™*"p"T)ug, + D|Dul} — o/e "2(i00u) Du + D(e™"v), (7.272)

where
FPT = g0 4 o/ e 24 P04 o/ e U, (7.273)
We note that FJF only differs from F ik (7.118) by a factor of e“. From our assumptions on
|a'Ric,| = e "|a’dduly and ||Q]] = e~*, we have uniform ellipticity of F ik Differentiating twice
yields
Orup; = FP10,0qup; + V(x, u, Ou, 00u, 90u, 90du, 000u), (7.274)

where WU is uniformly bounded along the flow. By the Krylov-Safonov theorem [72, 73], we have
that wug; is bounded in the C*/2 norm. The function u and the spacial gradient Du are also
bounded in the C®/? norm since the right-hand sides of (7.271) and (7.272) are bounded. We
may now apply parabolic Schauder theory (for example, in [71]) to the linearized equation (7.272).
Standard theory and a bootstrap argument give higher order estimates of u, and hence we obtain

estimates on derivatives of the curvature and torsion of g = e“g.
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7.6 Long time existence

Proposition 23. There exists My > 1 such that for all M > My, the following statement holds.

If the flow exists on [0,tg), and initially starts with uy = log M, then along the flow

1 _ Cy Cs . Cs
ClM S e u S M’ ‘T’z S M’ ’O/Rl(:w’ S W, (7275)
and
- 1 .- e -
|DFul? < Cy, igﬂk < FIk < 947, (7.276)

where Cy, only depends on (X,§), i, p, o, M.

Proof: Let §; and d9 be the constants from Corollary 1, and choose a smaller §; if necessary to

ensure §; < 1076, Recall that from Theorem 23,

1 _ Co
— < =eTt < = 7.277
=< (r.277)

along the flow for M large enough. Consider the set
I = {t €]0,t0) such that |o/Ric,| < &1, |T|* < 83 holds on [0,#]}. (7.278)

Since at t = 0 we have |a/Ric,| = |T|?> = 0, we know that I is non-empty. By definition, I is
relatively closed. We now show that I is open. Suppose t € I. By definition of I, the hypothesis of
Theorem 24 is satisfied, hence |T'|? < % < 69 at t as long as M is large enough. It follows that the
hypothesis of Theorem 25 is satisfied as long as M is large enough, hence |a/Ric,| < % < 97 at
t. We can conclude the existence of ¢ > 0 such that [ +¢) C I, and hence I is open.

It follows that I = [0,t9). We know that —CgP? < pP9 < C'gP7 since p can be bounded using

the background metric. For M large enough, we can conclude

1 7 -1 _
— ge_“g}pq <ale 3Pl < ge—“gpq, (7.279)
and we can apply Corollary 1 to obtain higher order estimates of u. Uniform ellipticity follows

from the definition of F¥* (7.273) and the estimates on |a/Ric,| = e %la’80ul; and ||©2]]. Q.E.D.

Theorem 27. There exists My > 1 such that for all M > My, if the flow initially starts with

ug = log M, then the flow ezists on [0, 00).

Proof: By short-time existence [89], we know the flow exists for some maximal time interval
[0,T). If T < oo, we may apply the previous proposition to extend the flow to [0,7 + ¢), which is
a contradiction. Q.E.D.
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7.7 Convergence of the flow

We may apply Theorem 27 to construct solutions to the Fu-Yau equation.

Theorem 28. There exists My > 1 such that for all M > My, if the flow initially starts with
ug = log M, then the flow exists on [0,00) and converges smoothly to a function u,, where oo

solves

/
0 =i90(e">w — a’e "> p) + %z‘aéuoo A 100U + U, / el = M. (7.280)
X

Proof: Since we will work with the scalar equation, all norms in this section will be with respect

to the background metric w. Let v = 0e”. Recall that

/X v=0, (7.281)

along the flow. Differentiating equation (7.9) with respect to time gives

(2}2

2005 = i00(vi + o’ e vp) 4 oiddu N i0d(e"v). (7.282)
Consider the functional
~2
J(t) = / gy (7.283)
x 2!
Compute
dJ YA ! _—2u / YA a8 _ —Uu
— = vi00(vw + a'e” Mup) + o’ [ viddu A i00(e“v) (7.284)

= —/iﬁv/\év/\d)—o//u%/\a( —2uy )—a'/iaéu/\iav/\ié(e_“v)
b's b's
= /]Vv|2—oz/ 2“i8v/\5v/\p+2o// e 2% idv A Ju A p
b's
/ vz@v/\@p—a/e‘“i@(‘)u/\i@u/\i@u—ko// e "vidou A idv A i0u.
X b's X

We may estimate

- / Vol + o|lo] / e=24170[2 + 20| |||V / el [Vu| (7.285)
X
+alop] [ el (90 + o'e 00l [ [90f
X

+HVull loe _“233UH/ ol [Vol.
X
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By Proposition 23, we know that on [0, 00) we have the estimates

Cs

w G )
et < GF <L [V} S G0 fale Myl < 5 7

Hence for any € > 0, we can choose M large enough such that

dJ 1 9 1 e 9 5/ 9
Y v Vol < —(z-% v - .
dt — Q/X‘ ol +5/X|U|| o< (2 2>/X| v "2 X|U|

Since [ v =0, we may use the Poincaré inequality to obtain, for € > 0 small enough,

dJ )
dt — "/X” s

with n > 0. This implies that

/ v? < Ce ™,
X

(7.286)

(7.287)

(7.288)

(7.289)

From this estimate, we see that for any sequence v(t;) converging to vso, we have v, = 0. We can

now show convergence of the flow. Following the argument given in Proposition 2.2 in [15], we have

IN

[l = e )

|/ " vt (1) = / ’ [ ety
[ (o) e [T (f)

+00 n
< C/ e 2'dt
S

IN

(7.290)

Recall that we normalized the background metric such that [ X “’72 = 1. This estimate shows that,

as t — +oo, e“(x,t) are Cauchy in L' norm. Thus e%(z,t) converges in the L' norm to some

function e%>(z) as t — oo.

By our uniform estimates, e“>~ is bounded in C'*°, and a standard argument shows that e“

converges in C™°. Indeed, if there exist a sequence of times such that ||e”“(®t) — e¢=teo(@)|| o, > ¢

then by our estimates a subsequence converges in C¥ to e~%~. Then ||e %c(®) — ¢=tc(@)| 1 =0

but [Je~4(®) — e=uec(@)|| o, > ¢, a contradiction.

It follows from (7.289) that e“~ satisfies the Fu-Yau equation (7.280).
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