79 research outputs found

    Advanced Genetic Studies on Powdery Mildew Resistance in TGR-1551

    Full text link
    [EN] Cucurbits powdery mildew (CPM) is one of the main limiting factors of melon cultivation worldwide. Resistance to races 1, 2, and 5 has been reported in the African accession TGR-1551, whose resistance is controlled by a dominant-recessive epistasis. The dominant and recessive quantitative trail loci (QTL) have previously been located in chromosomes 5 and 12, respectively. We used several densely genotyped BC3 families derived from the cross between TGR-1551 and the susceptible cultivar 'Bola de Oro' to finely map these resistance regions. The further phenotyping and genotyping of the selected BC5, BC5S1, BC5S2, BC4S1, BC(4)xPS, and (BC(4)xPS) S-1 offspring allowed for the narrowing of the candidate intervals to a 250 and 381 kb region in chromosomes 5 and 12, respectively. Moreover, the temperature effect over the resistance provided by the dominant gene has been confirmed. High resolution melting markers (HRM) were tightly linked to both resistance regions and will be useful in marker-assisted selection programs. Candidate R genes with variants between parents that caused a potential modifier impact on the protein function were identified within both intervals. These candidate genes provide targets for future functional analyses to better understand the resistance to powdery mildew in melons.This research was funded by the Spanish Ministerio de Ciencia e Innovacion (MCIN/AEI/10.13039/501100011033), grant number PID2020-116055RB (C21 and C22), and by the Conselleria d'Educacio, Investigacio, Cultura i Esports de la Generalitat Valenciana, grant number PROMETEO/2021/072 (to promote excellence groups, cofinanced with FEDER funds). M.L. is a recipient of a predoctoral fellowship (PRE2018-083466) of the Spanish Ministerio de Ciencia, Innovacion y Universidades co-financed with FSE funds.López-Martín, M.; Pérez De Castro, AM.; Picó Sirvent, MB.; Gómez-Guillamon, ML. (2022). Advanced Genetic Studies on Powdery Mildew Resistance in TGR-1551. International Journal of Molecular Sciences. 23(20):1-19. https://doi.org/10.3390/ijms232012553119232

    Marcadores basados en restricción e hibridación: RFLPs (Restriction Fragment Lenght Polymorphisms)

    Full text link
    En este artículo docente se describen los marcadores RFLPs (Restriction Fragment Length Polymorphisms o polimorfismos en la longitud de fragmentos de restricción). Se detallan los pasos a seguir para la identificación de polimorfismos mediante este tipo de marcadores, así como las causas de polimorfismo. Además, se justifican sus principales ventajas e inconvenientes.Pérez De Castro, AM.; Picó Sirvent, MB. (2014). Marcadores basados en restricción e hibridación: RFLPs (Restriction Fragment Lenght Polymorphisms). http://hdl.handle.net/10251/3835

    Marcadores moleculares basados en PCR: Marcadores RAPD

    Full text link
    Los marcadores RAPD se han utilizado con éxito en diversas especies con fines de mejora animal o vegetal y para el análisis de poblaciones de microorganismos. En este artículo se incluye una breve revisión teórica y una explicación práctica detallada del procedimiento. Con la explicación planteada se pretende facilitar el aprendizaje de este sistema de marcadores al alumno de Ciencias de la vida (Agronomía, Biología, Veterinaria, Medio ambiente, Biotecnología..), tanto a nivel teórico como práctico.Picó Sirvent, MB.; Pérez De Castro, AM. (2012). Marcadores moleculares basados en PCR: Marcadores RAPD (Random amplified polymorphic DNA). http://hdl.handle.net/10251/1704

    Effectiveness of an Invasive Mechanical Ventilation Weaning Protocol

    Get PDF
    Objective: to know the effectiveness of the process of disconnection of invasive mechanical ventilation through the implementation of a standardized protocol led by the nursing team of a surgical Intensive Care Unit and implemented in a multidisciplinary way to reduce the ventilatory time of patients facing to the traditional clinical method of weaning. Method: case-control study. 91 patients who required invasive mechanical ventilation for 24 hours or more were included and a group with the application of the standardized protocol was compared with the group that followed the usual clinical method. Results: with the application of the standardized protocol, it was possible to reduce the time of invasive mechanical ventilation (85.29 ± 46.72 vs 116.92 ± 94.39); the time spent at weaning (2.40 ± 1.43 vs 41.250± 51.60) and the reintubation figures (2% vs 17%). Conclusion: the use of disconnection protocols carried out in a multidisciplinary way is a useful tool to reduce invasive mechanical ventilation times and achieve improvements in the patient’s health

    Resistance in melon to Monosporascus cannonballus and M. eutypoides ; fungal pathogens associated with Monosporascus root rot and vine decline

    Full text link
    This is the peer reviewed version of the following article: Castro, G, Perpiñá, G, Esteras, C, Armengol, J, Picó, B, Pérez-de-Castro, A. Resistance in melon to Monosporascus cannonballus and M. eutypoides: Fungal pathogens associated with Monosporascus root rot and vine decline. Ann Appl Biol. 2020; 177: 101¿ 111, which has been published in final form at https://doi.org/10.1111/aab.12590. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] The fungal species Monosporascus cannonballus and M. eutypoides have been described as the causal agents of Monosporascus root rot and vine decline disease (MRRVD), which mainly affects melon and watermelon crops. Resistance to M. cannonballus has been reported in some melon cultivars (ssp. melo). Moreover, melon ssp. agrestis accessions have proven to be better resistance sources. This is the case of the Korean accession 'Pat 81', highly resistant under field and artificial inoculation. The objective of the work here presented was the evaluation of the resistance to MRRVD of different accessions representing the variability of Cucumis melo ssp. agrestis, against both, M. cannonballus and M. eutypoides, in a multiyear assay under different infection conditions. In general, M. eutypoides was less aggressive than M. cannonballus in the different environmental conditions. There was a strong influence of temperature on MRRVD, with more severe symptoms with higher temperatures and with variable effect of infection on plant development depending on the fungal species considered. Resistance to MRRVD has been confirmed in 'Pat 81' and in its derived F1 with a susceptible Piel de Sapo melon. Among the new germplasm explored, African accessions (both wild agrestis and exotic cultivated acidulus) showed good performance in artificial inoculation assays and in field conditions. These sources do not present compatibility problems with commercial melons, so they can be introduced in backcrossing programs. The accession assayed of the wild relative Cucumis metuliferus, also resistant to Fusarium wilt and to root-knot nematode, was highly resistant to MRRVD. The interest of this accession mainly relies in its advantages as a rootstock for melon.Generalitat Valenciana, Grant/Award Number: PROMETEO2017/078; Ministerio de Economia y Competitividad, Grant/Award Number: AGL2014-53398-C2-2-R; Spanish Ministerio de Ciencia, Innovacion y Universidades, Grant/Award Number: AGL2017-85563-C2-1-RCastro, G.; Perpiña Martin, G.; Esteras Gómez, C.; Armengol Fortí, J.; Picó Sirvent, MB.; Pérez De Castro, AM. (2020). Resistance in melon to Monosporascus cannonballus and M. eutypoides ; fungal pathogens associated with Monosporascus root rot and vine decline. Annals of Applied Biology. 177(1):101-111. https://doi.org/10.1111/aab.12590S1011111771Aegerter, B. J., Gordon, T. R., & Davis, R. M. (2000). Occurrence and Pathogenicity of Fungi Associated with Melon Root Rot and Vine Decline in California. Plant Disease, 84(3), 224-230. doi:10.1094/pdis.2000.84.3.224Salem, I. B., Correia, K. C., Boughalleb, N., Michereff, S. J., León, M., Abad-Campos, P., … Armengol, J. (2013). Monosporascus eutypoides, a Cause of Root Rot and Vine Decline in Tunisia, and Evidence that M. cannonballus and M. eutypoides Are Distinct Species. Plant Disease, 97(6), 737-743. doi:10.1094/pdis-05-12-0464-reBiernacki, M., & Bruton, B. D. (2001). Quantitative Response of Cucumis melo Inoculated with Root Rot Pathogens. Plant Disease, 85(1), 65-70. doi:10.1094/pdis.2001.85.1.65Chew-Madinaveitia, Y. I., Gaytán-Mascorro, A., & Herrera-Pérez, T. (2012). First Report of Monosporascus cannonballus on Melon in Mexico. Plant Disease, 96(7), 1068-1068. doi:10.1094/pdis-02-12-0181-pdnCluck, T. W., Biles, C. L., Duggan, M., Jackson, T., Carson, K., Armengol, J., … Bruton, B. D. (2009). Association of dsRNA to Down-Regulation of Perithecial Synthesis in Monosporascus cannonballus. The Open Mycology Journal, 3(1), 9-19. doi:10.2174/1874437000903010009Cohen, R., Horev, C., Burger, Y., Shriber, S., Hershenhorn, J., Katan, J., & Edelstein, M. (2002). Horticultural and Pathological Aspects of Fusarium Wilt Management Using Grafted Melons. HortScience, 37(7), 1069-1073. doi:10.21273/hortsci.37.7.1069Cohen, R., Pivonia, S., Burger, Y., Edelstein, M., Gamliel, A., & Katan, J. (2000). Toward Integrated Management of Monosporascus Wilt of Melons in Israel. Plant Disease, 84(5), 496-505. doi:10.1094/pdis.2000.84.5.496Cohen, R., Pivonia, S., Crosby, K. M., & Martyn, R. D. (2012). Advances in the Biology and Management of Monosporascus Vine Decline and Wilt of Melons and Other Cucurbits. Horticultural Reviews, 77-120. doi:10.1002/9781118100592.ch2Collado, J., Gonzalez, A., Platas, G., Stchigel, A. M., Guarro, J., & Pelaez, F. (2002). Monosporascus ibericus sp. nov., an endophytic ascomycete from plants on saline soils, with observations on the position of the genus based on sequence analysis of the 18S rDNA. Mycological Research, 106(1), 118-127. doi:10.1017/s0953756201005172Crosby, K. (2000). NARROW-SENSE HERITABILITY ESTIMATES FOR ROOT TRAITS AND MONOSPORASCUS CANNONBALLUS TOLERANCE IN MELON (CUCUMIS MELO) BY PARENT-OFFSPRING REGRESSION. Acta Horticulturae, (510), 149-154. doi:10.17660/actahortic.2000.510.25Crosby, K., Wolff, D., & Miller, M. (2000). Comparisons of Root Morphology in Susceptible and Tolerant Melon Cultivars before and after Infection by Monosporascus cannonballus. HortScience, 35(4), 681-683. doi:10.21273/hortsci.35.4.681Dias, R. de C. S., Pico, B., Espinos, A., & Nuez, F. (2004). Resistance to melon vine decline derived from Cucumis melo ssp. agrestis: genetic analysis of root structure and root response. Plant Breeding, 123(1), 66-72. doi:10.1046/j.1439-0523.2003.00944.xDíaz, J. A., Mallor, C., Soria, C., Camero, R., Garzo, E., Fereres, A., … Moriones, E. (2003). Potential Sources of Resistance for Melon to Nonpersistently Aphid-borne Viruses. Plant Disease, 87(8), 960-964. doi:10.1094/pdis.2003.87.8.960Endl, J., Achigan-Dako, E. G., Pandey, A. K., Monforte, A. J., Pico, B., & Schaefer, H. (2018). Repeated domestication of melon (Cucumis melo ) in Africa and Asia and a new close relative from India. American Journal of Botany, 105(10), 1662-1671. doi:10.1002/ajb2.1172Expósito, A., Munera, M., Giné, A., López-Gómez, M., Cáceres, A., Picó, B., … Sorribas, F. J. (2018). Cucumis metuliferusis resistant to root-knot nematodeMi1.2gene (a)virulent isolates and a promising melon rootstock. Plant Pathology, 67(5), 1161-1167. doi:10.1111/ppa.12815Fita, A., Esteras, C., Picó, B., & Nuez, F. (2009). Cucumis melo L. New Breeding Lines Tolerant to Melon Vine Decline. HortScience, 44(7), 2022-2024. doi:10.21273/hortsci.44.7.2022Fita, A., Picó, B., Dias, R. C. S., & Nuez, F. (2008). Effects of root architecture on response to melon vine decline. The Journal of Horticultural Science and Biotechnology, 83(5), 616-623. doi:10.1080/14620316.2008.11512432Fita, A., Picó, B., Dias, R. C. S., & Nuez, F. (2009). ‘Piel de Sapo’ Breeding Lines Tolerant to Melon Vine Decline. HortScience, 44(5), 1458-1460. doi:10.21273/hortsci.44.5.1458Fita, A., Picó, B., Monforte, A. J., & Nuez, F. (2008). Genetics of Root System Architecture Using Near-isogenic Lines of Melon. Journal of the American Society for Horticultural Science, 133(3), 448-458. doi:10.21273/jashs.133.3.448Fita, A., Picó, B., Roig, C., & Nuez, F. (2007). Performance ofCucumis melossp.agrestisas a rootstock for melon. The Journal of Horticultural Science and Biotechnology, 82(2), 184-190. doi:10.1080/14620316.2007.11512218Gisbert C. Sorribas F. J. Martínez E. M. Gammoudi N. Bernat G. &Picó M.B. (2014). Grafting melons onto potentialCucumisspp. rootstocks. InCOST ACTION FA1204 2nd annual conference – Innovation in vegetable grafting for sustainability–Proceedings. 57 pp. Carcavelos Portugal.Gonzalo, M. J., Díaz, A., Dhillon, N. P. S., Reddy, U. K., Picó, B., & Monforte, A. J. (2019). Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis. BMC Genomics, 20(1). doi:10.1186/s12864-019-5784-0Iglesias, A., Pico, B., & Nuez, F. (2000). A temporal genetic analysis of disease resistance genes: resistance to melon vine decline derived from Cucumis melo var. agrestis. Plant Breeding, 119(4), 329-334. doi:10.1046/j.1439-0523.2000.00507.xIGLESIAS, A., PICÓ, B., & NUEZ, F. (2000). Pathogenicity of fungi associated with melon vine decline and selection strategies for breeding resistant cultivars. Annals of Applied Biology, 137(2), 141-151. doi:10.1111/j.1744-7348.2000.tb00046.xLeida, C., Moser, C., Esteras, C., Sulpice, R., Lunn, J. E., de Langen, F., … Picó, B. (2015). Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics, 16(1). doi:10.1186/s12863-015-0183-2López-Sesé, A. I., & Gómez-Guillamón, M. L. (2000). Resistance to Cucurbit Yellowing Stunting Disorder Virus (CYSDV) in Cucumis melo L. HortScience, 35(1), 110-113. doi:10.21273/hortsci.35.1.110Malloch, D., & Cain, R. F. (1971). New cleistothecial Sordariaceae and a new family, Coniochaetaceae. Canadian Journal of Botany, 49(6), 869-880. doi:10.1139/b71-127Markakis, E. A., Trantas, E. A., Lagogianni, C. S., Mpalantinaki, E., Pagoulatou, M., Ververidis, F., & Goumas, D. E. (2018). First Report of Root Rot and Vine Decline of Melon Caused by Monosporascus cannonballus in Greece. Plant Disease, 102(5), 1036-1036. doi:10.1094/pdis-10-17-1568-pdnD. Martyn, R. (2007). LATE-SEASON VINE DECLINES OF MELONS: PATHOLOGICAL, CULTURAL OR BOTH? Acta Horticulturae, (731), 345-356. doi:10.17660/actahortic.2007.731.46Martyn, R. D. (1996). First Report of Monosporascus Root Rot/Vine Decline of Watermelon in Mexico. Plant Disease, 80, 1430. doi:10.1094/pd-80-1430cMartyn, R. D. (1996). Monosporascus Root Rot and Vine Decline: An Emerging Disease of Melons Worldwide. Plant Disease, 80(7), 716. doi:10.1094/pd-80-0716Negreiros, A. M. P., Júnior, R. S., Rodrigues, A. P. M. S., León, M., & Armengol, J. (2019). Prevalent weeds collected from cucurbit fields in Northeastern Brazil reveal new species diversity in the genusMonosporascus. Annals of Applied Biology, 174(3), 349-363. doi:10.1111/aab.12493Picó, B., Roig, C., Fita, A., & Nuez, F. (2007). Quantitative detection of Monosporascus cannonballus in infected melon roots using real-time PCR. European Journal of Plant Pathology, 120(2), 147-156. doi:10.1007/s10658-007-9203-zPivonia, S., Cohen, R., Kigel, J., & Katan, J. (2002). Effect of soil temperature on disease development in melon plants infected by Monosporascus cannonballus. Plant Pathology, 51(4), 472-479. doi:10.1046/j.1365-3059.2002.00731.xPollack, F. G., & Uecker, F. A. (1974). Monosporascus cannonballus an Unusual Ascomycete in Cantaloupe Roots. Mycologia, 66(2), 346. doi:10.2307/3758370Reuveni, R. (1983). The Role ofMonosporascus eutypoidesin a Collapse of Melon Plants in an Arid Area of Israel. Phytopathology, 73(9), 1223. doi:10.1094/phyto-73-1223Roig, C., Fita, A., Ríos, G., Hammond, J. P., Nuez, F., & Picó, B. (2012). Root transcriptional responses of two melon genotypes with contrasting resistance to Monosporascus cannonballus (Pollack et Uecker) infection. BMC Genomics, 13(1), 601. doi:10.1186/1471-2164-13-601Sales Júnior, R., Senhor, R. F., Michereff, S. J., & Negreiros, A. M. P. (2019). REACTION OF MELON GENOTYPES TO THE ROOT´S ROT CAUSED BY Monosporascus. Revista Caatinga, 32(1), 288-294. doi:10.1590/1983-21252019v32n130rcStanghellini, M. E., Alcantara, T. P., & Ferrin, D. M. (2010). Germination ofMonosporascus cannonballusascospores in the rhizosphere: a host-specific response. Canadian Journal of Plant Pathology, 32(3), 402-405. doi:10.1080/07060661.2010.499270Wolff D. W.(1996). Genotype fruit load and temperature affect monosporascus root rot/vine decline symptom expression in melon (Cucumis meloL.). InM. L.Gomez‐Guillamon C.Soria J.Cuartero J. A.Tores &R.Fernandez Munoz(Eds.) Cucurbits toward 2000. Proceedings of the 6th Eucarpia Meeting on Curcurbit Genetics and Breeding(pp. 280–284). Malaga Spain.Wolff, D. W., Leskovar, D. I., Black, M. C., & Miller, M. E. (1997). Differential Fruit Load in Melon (Cucumis melo L.) Affects Shoot and Root Growth, and Vine Decline Symptoms. HortScience, 32(3), 526B-526. doi:10.21273/hortsci.32.3.526bYan, L. Y., Zang, Q. Y., Huang, Y. P., & Wang, Y. H. (2016). First Report of Root Rot and Vine Decline of Melon Caused by Monosporascus cannonballus in Eastern Mainland China. Plant Disease, 100(3), 651-651. doi:10.1094/pdis-06-15-0655-pdnYuste-Lisbona, F. J., López-Sesé, A. I., & Gómez-Guillamón, M. L. (2010). Inheritance of resistance to races 1, 2 and 5 of powdery mildew in the melon TGR-1551. Plant Breeding, 129(1), 72-75. doi:10.1111/j.1439-0523.2009.01655.

    Fine mapping of wmv1551, a resistance gene to Watermelon mosaic virus in melon

    Full text link
    [EN] Recessive resistance to Watermelon mosaic virus (WMV) in melon has previously been reported in the African accession TGR-1551. Using a population of recombinant inbred lines (RIL), derived from a cross between TGR-1551 and the susceptible Spanish cultivar Bola de Oro' (BO), a major quantitative trait locus (QTL) controlling the resistance was previously mapped to a region of approximately 760kb in chromosome 11. Minor QTLs were also reported with lower effects, dependent on the environmental conditions. A genotyping by sequencing (GBS) analysis of the RIL population has provided new information that allowed the better location of the major QTL in chromosome 11. Moreover, three minor QTLs in chromosomes 4, 5, and 6 were identified. Generations derived from the RIL population were subsequently phenotyped for resistance and genotyped with SNP markers to fine map the resistance derived from TGR-1551. The results obtained have allowed to narrow the position of the resistance gene on chromosome 11, designated as wmv(1551), to a 141-kb region, and the confirmation of a minor QTL in chromosome 5. The effect of the minor QTL in chromosome 5 was significant in heterozygote plants for the introgression in chromosome 11. The SNP markers linked to both QTLs will be useful in breeding programs aimed at the introgression of WMV resistance derived from TGR-1551. Future work will be directed to identifying the resistance gene, wmv(1551), in the candidate region on chromosome 11.This study was partially supported by the Spanish Ministerio de Economia y Competitividad grants AGL2014-53398-C2 (1-R and 2-R), by the Spanish Ministerio de Ciencia, Innovacion y Universidades grants AGL2017-85563-C2 (1-R and 2-R) and BIO2017-83184-R, and by the PROMETEO project 2017/078 (to promote excellence groups) by the Conselleria d'Educacio, Investigacio, Cultura i Esports (Generalitat Valenciana).Pérez De Castro, AM.; Esteras Gómez, C.; Alfaro Fernández, AO.; Daròs, J.; Monforte Gilabert, AJ.; Picó Sirvent, MB.; Gómez-Guillamón, ML. (2019). Fine mapping of wmv1551, a resistance gene to Watermelon mosaic virus in melon. Molecular Breeding. 39(7):1-15. https://doi.org/10.1007/s11032-019-0998-zS115397Abreu-Neto JB, Turchetto-Zolet AC, Valter de Oliveira LF, Bodanese Zanettini MH, Margis-Pinheiro M (2013) Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J 280:1604–1616Aragonés V, Pérez-de-Castro A, Cordero T, Cebolla-Cornejo J, López C, Picó B, Daròs JA (2018) A Watermelon mosaic virus clone tagged with the yellow visual maker phytoene synthase facilitates scoring infectivity in melon breeding programs. Eur J Plant Pathol 153:1317–1323. https://doi.org/10.1007/s10658-018-01621-xBachlava E, Bertrand F, De Vries J, Joobeur T, King J, Kraakman P (2014) Patent No. US20140059712.Multiple-virus-resistant melonChen S, Li F, Liu D, Jiang C, Cui L, Shen L, Liu G, Yang A (2017) Dynamic expression analysis of early response genes induced by potato virus Y in PVY-resistant Nicotiana tabacum. Plant Cell Rep 36:297–311Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226Cordero T, Cerdán L, Carbonell A, Katsarou K, Kalantidis K, Daròs JA (2017) Dicer-like 4 is involved in restricting the systemic movement of Zucchini yellow mosaic virus in Nicotiana benthamiana. Mol Plant-Microbe Interact 30:63–71Desbiez C, Joannon B, Wipf-Scheibel C, Chandeysson C, Lecoq H (2009) Emergence of new strains of Watermelon mosaic virus in South-eastern France: evidence for limited spread but rapid local population shift. Virus Res 141:201–208Desbiez C, Lecoq H (2008) Evidence for multiple intraspecific recombinants in natural populations of Watermelon mosaic virus (WMV, Potyvirus). Arch Virol 153:1749–1754Díaz-Pendón JA, Fernández-Muñoz R, Gómez-Guillamón ML, Moriones E (2005) Inheritance of resistance to Watermelon mosaic virus in Cucumis melo that impairs virus accumulation, symptom expression, and aphid transmission. Phytopathology 95:840–846Díaz-Pendón JA, Mallor C, Soria C, Camero R, Garzo E, Fereres A, Alvarez JM, Gómez-Guillamón ML, Luis-Arteaga M, Moriones E (2003) Potential sources of resistance for melon to nonpersistently aphid-borne viruses. Plant Dis 87:960–964Díaz-Pendón JA, Truniger V, Nieto C, Garcia-Mas J, Bendahmane A, Aranda MA (2004) Advances in understanding recessive resistance to plant viruses. Mol Plant Pathol 5:223–233Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Esteras C, Formisano G, Roig C, Díaz A, Blanca J, Garcia-Mas J, Gómez-Guillamón ML, López-Sesé AI, Lázaro A, Monforte AJ, Picó B (2013) SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet 126:1285–1303Fereres A, Moreno A (2011) Integrated control measures against viruses and their vectors. In: Caranta C, Aranda MA, Tepfer M, López-Moya J (eds) Recent Advances in Plant Virology, Caister Academic Press, Norfolk, pp 237–262Fernández-Silva I, Eduardo I, Blanca J, Esteras C, Picó B, Nuez F, Arús P, García-Mas J, Monforte A (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118:139–150Fukino N, Sakata Y, Kunihisa M, Matsumoto S (2007) Characterization of novel simple sequence repeat (SSR) markers for melon (Cucumis melo L.) and their use for genotyping identification. J Hort Sci Biotechnol 82:330–334 Details about primer sequences: http://cse.naro.affrc.go.jp/nbk/List_CMN.xlsGilbert RZ, Kyle MM, Munger HM, Gray SM (1994) Inheritance of resistance to Watermelon mosaic virus in Cucumis melo L. HortSci 29:107–110González VM, Aventín N, Centeno E, Puigdomènech P (2013) High presence/absence gene variability in defense-related gene clusters of Cucumis melo. BMC Genomics 14:782González-Ibeas D, Blanca J, Donaire L, Saladié M, MArcarell-Creus A, Cano-Delgado A, García-Mas J, Llave C, Aranda MA (2011) Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing. BMC Genomics 12:393González-Ibeas D, Cañizares J, Aranda MA (2012) Microarray analysis shows that recessive resistance to Watermelon mosaic virus in melon is associated with the induction of defense response genes. Mol Plant-Microbe Interact 25:107–118Hashimoto M, Neriya Y, Yamaji Y, Namba S (2016) Recessive resistance to plant viruses: potential resistance genes beyond translation initiation factors. Front Microbiol 7:1695JUAN A. DIAZ-PENDON, VERONICA TRUNIGER, CRISTINA NIETO, JORDI GARCIA-MAS, ABDELHAFID BENDAHMANE, MIGUEL A. ARANDA, (2004) Advances in understanding recessive resistance to plant viruses. Molecular Plant Pathology 5 (3):223-233Juárez M, Legua P, Mengual CM, Kassem MA, Sempere RN, Gómez P, Truniger V, Aranda MA (2013) Relative incidence, spatial distribution and genetic diversity of cucurbit viruses in eastern Spain. Ann Appl Biol 162:362–370Lecoq H, Desbiez C (2008) Watermelon mosaic virus and Zucchini yellow mosaic virus. In: Mahy BWJ and Van Regenmortel MHV (eds) Encyclopedia of virology, vol. 5, 3rd edn. Elsevier, Oxford, pp 433–440Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, De Langen F, Monforte AJ, Picó B (2015) Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in abroad germplasm collection of melon (Cucumis melo L). BMC Genet 16:28Lincoln S, Daly M, Lander ES (1993) Constructing genetic maps with MAPMAKER/EXP 3.0: a tutorial and reference manual. Whitehead Inst Biomed Res Tech Rpt. 3 edition. Whitehead Institute for Biomedical Research, CambridgeMaule A, Caranta C, Boulton MI (2007) Sources of natural resistance to plant viruses: status and prospects. Mol Plant Pathol 8:223–231Moyer JW, Kennedy GG, Romanow LR (1985) Resistance to Watermelon Mosaic Virus II multiplication in Cucumis melo. Phytopathol 75:201–205Munger HM (1991) Progress in breeding melons for watermelon mosaic resistance. Rep Cucurbit Genet Coop 14:53–54Ouibrahim L, Mazier M, Estevan J, Pagny G, Decroocq V, Desbiez C, Moretti A, Gallois JL, Caranta C (2014) Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. Plant J 79:705–716Palomares-Ríus F, Viruel M, Yuste-Lisbona F, López-Sesé A, Gómez-Guillamón ML (2011) Simple sequence repeat markers linked to QTL for resistance to Watermelon mosaic virus in melon. Theor Appl Genet 123:1207–1214Palomares-Ríus FJ, Garcés-Claver A, Gómez-Guillamón ML (2016) Detection of Two QTLS Associated with Resistance to Cucurbit Yellow Stunting Disorder Virus in Melon Line TGR 1551. In: Kozik EU and Paris HS (eds.) Proceedings of Cucurbitaceae 2016, XIth Eucarpia Meeting on Genetics and Breeding of Cucurbitaceae, July 24–28, 2016, Warsaw, Poland, pp 334–337Perpiñá G, Esteras C, Gibon Y, Monforte AJ, Picó B (2016) A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biol 16:154Provvidenti R, Robinson RW, Munger HM (1978) Resistance in feral species to six viruses infecting Cucurbita. Plant Dis Report 62:326Rodríguez-Hernández AM, Gosalvez B, Sempere RN, Burgos L, Aranda MA, Truniger V (2012) Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Mol Plant Pathol 13:755–763Sáez C, Esteras C, Martínez C, Ferriol M, Dhillon NPS, López C, Picó B (2017) Resistance to Tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Rep 36:1571–1584Sarria-Villada E, Garzo E, López-Sesé AI, Fereres A, Gómez-Guillamón ML (2009) Hypersensitive response to Aphis gossypii Glover in melon genotypes carrying the Vat gene. J Exp Bot 60:3269–3277. https://doi.org/10.1093/jxb/erp163Schoeny A, Desbiez C, Millot P, Wipf-Scheibel C, Nozeran K, Gognalons P, Lecoq H, Boissot N (2017) Impact of Vat resistance in melon on viral epidemics and genetic structure of virus populations. Virus Res 241:105–115Sekhwal MK, Li P, Lam I, Wang X, Cloutier S, You FM (2015) Disease resistance gene analogs (RGAs) in plants. Int J Mol Sci 16:19248–19290. https://doi.org/10.3390/ijms160819248Sowell G, Demski JW (1981) Resistance to Watermelon mosaic virus in muskmelon. FAO Plant Prot Bull 29:71–73Tian G, Miao H, Yang Y, Zhou J, Lu H, Wang Y, Xie B, Zhang S, Gu X (2016) Genetic analysis and fine mapping of Watermelon mosaic virus resistance gene in cucumber. Mol Breed 36(131). https://doi.org/10.1007/s11032-016-0524-5Van Ooijen JW (2009) MapQTL® 6 Software for the mapping of quantitative trait loci in experimental population of diploid species Kyazma BV, WageningenVenkatesh J, An J, Kang WH, Jahn M, Kang BC (2018) Fine mapping of the dominant potyvirus resistance gene Pvr7 reveals a relationship with Pvr4 in Capsicum annuum. Phytopathol 108:142–148Wang S, Basten CJ, Zeng ZB (2012) Windows QTL cartographer 25 department of statistics, North Carolina State University, Raleigh, NC http://statgen.ncsu.edu/qtlcart/WQTLCart.htm Accessed 20 Feb 2018Webb RE (1967) Cantaloupe breeding line B66-5: highly resistant to watermelon mosaic virus I. HortSci 2:58–59Yuste-Lisbona FJ, Capel C, Gómez-Guillamón ML, Capel J, López-Sesé AI, Lozano R (2011) Codominant PCR-based markers and candidate genes for powdery mildew resistance in melon (Cucumis melo L.). Theor Appl Genet 122:747–758Zeng ZB (1994) Precision mapping of quantitative trait loci. Genet 136:1457–1468Zschiesche W, Barth O, Daniel K, Böhme S, Rausche J, Humbeck K (2015) The zinc binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytol 207:1084–109

    A Watermelon mosaic virus clone tagged with the yellow visual maker phytoene synthase facilitates scoring infectivity in melon breeding programs

    Full text link
    This research was supported by grants BIO2014 54269-R, AGL2014 53398-C2 2-R, BIO2017 83184-R, and AGL2017 85563-C2 1-R from the Spanish Ministerio de Ciencia, Innovación y Universidades (co-financed FEDER funds)Aragones, V.; Pérez De Castro, AM.; Cordero, T.; Cebolla Cornejo, J.; López Del Rincón, C.; Picó Sirvent, MB.; Daros Arnau, JA. (2019). A Watermelon mosaic virus clone tagged with the yellow visual maker phytoene synthase facilitates scoring infectivity in melon breeding programs. European Journal of Plant Pathology. 153:317-323. https://doi.org/10.1007/s10658-018-01621-xS317323153Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.Azevedo-Meleiro, C. H., & Rodriguez-Amaya, D. B. (2007). Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo. Journal of Agricultural and Food Chemistry, 55(10), 4027–4033.Bedoya, L. C., Martínez, F., Orzáez, D., & Daròs, J. A. (2012). Visual tracking of plant virus infection and movement using a reporter MYB transcription factor that activates anthocyanin biosynthesis. Plant Physiology, 158(3), 1130–1138.Brown, R. N., Bolanos-Herrera, A., Myers, J. R., & Jahn, M. M. (2003). Inheritance of resistance to four cucurbit viruses in Cucurbita moschata. Euphytica, 129(3), 253–258.Cordero, T., Cerdán, L., Carbonell, A., Katsarou, K., Kalantidis, K., & Daròs, J. A. (2017a). Dicer-Like 4 is involved in restricting the systemic movement of Zucchini yellow mosaic virus in Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 30(1), 63–71.Cordero, T., Mohamed, M. A., López-Moya, J. J., & Daròs, J. A. (2017b). A recombinant Potato virus Y infectious clone tagged with the Rosea1 visual marker (PVY-Ros1) facilitates the analysis of viral infectivity and allows the production of large amounts of anthocyanins in plants. Frontiers in Microbiology, 8, 611.Cuevas, H. E., Staub, J. E., Simon, P. W., & Zalapa, J. E. (2009). A consensus linkage map identifies genomic regions controlling fruit maturity and beta-carotene-associated flesh color in melon (Cucumis melo L.). TAG. Theoretical and Applied Genetics, 119(4), 741–756.Desbiez, C., & Lecoq, H. (2004). The nucleotide sequence of Watermelon mosaic virus (WMV, Potyvirus) reveals interspecific recombination between two related potyviruses in the 5′ part of the genome. Archives of Virology, 149(8), 1619–1632.Desbiez, C., & Lecoq, H. (2008). Evidence for multiple intraspecific recombinants in natural populations of Watermelon mosaic virus (WMV, Potyvirus). Archives of Virology, 153(9), 1749–1754.Formisano, G., Roig, C., Esteras, C., Ercolano, M. R., Nuez, F., Monforte, A. J., & Picó, M. B. (2012). Genetic diversity of Spanish Cucurbita pepo landraces: An unexploited resource for summer squash breeding. Genetic Resources and Crop Evolution, 59(6), 1169–1184.Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison 3rd, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6(5), 343–345.Gilbert, R. Z., Kyle, M. M., Munger, H. M., & Gray, S. M. (1994). Inheritance of resistance to watermelon mosaic virus in Cucumis melo L. Hortscience, 29(2), 107–110.Gur, A., Gonda, I., Portnoy, V., Tzuri, G., Chayut, N., Cohen, S., et al. (2016). Genomic aspects of melon fruit quality. In R. Grumet, N. Katzir and J. García-Mas (Eds.), Genetics and genomics of the Cucurbitaceae (pp. 377–408), Springer International Publishing AG 2016.Juarez, M., Legua, P., Mengual, C. M., Kassem, M. A., Sempere, R. N., Gómez, P., Truniger, V., & Aranda, M. A. (2013). Relative incidence, spatial distribution and genetic diversity of cucurbit viruses in eastern Spain. Annals of Applied Biology, 162(3), 362–370.López-González, S., Aragonés, V., Daròs, J. A., Sánchez, F., & Ponz, F. (2017). An infectious cDNA clone of a radish-infecting Turnip mosaic virus strain. European Journal of Plant Pathology, 148(1), 207–211.Majer, E., Daròs, J. A., & Zwart, M. P. (2013). Stability and fitness impact of the visually discernible Rosea1 marker in the tobacco etch virus genome. Viruses, 5(9), 2153–2168.Majer, E., Llorente, B., Rodríguez-Concepción, M., & Daròs, J. A. (2017). Rewiring carotenoid biosynthesis in plants using a viral vector. Scientific Reports, 7, 41645.Olives Barba, A. I., Cámara Hurtado, M., Sánchez Mata, M. C., Fernández Ruiz, V., & López Sáenz de Tejada, M. (2006). Application of a UV-vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chemistry, 95(2), 328–336.Ouibrahim, L., Mazier, M., Estevan, J., Pagny, G., Decroocq, V., Desbiez, C., Moretti, A., Gallois, J. L., & Caranta, C. (2014). Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. The Plant Journal, 79(5), 705–716.Paris, H. S. (2016). Genetic resources of pumpkins and squash, Cucurbita spp.. In R. Grumet, N. Katzir y J. García-Mas (eds.), Genetics and genomics of the Cucurbitaceae (pp. 111–154), Springer International Publishing AG 2016.Passeri, V., Koes, R., & Quattrocchio, F. M. (2016). New challenges for the design of high value plant products: Stabilization of anthocyanins in plant vacuoles. Frontiers in Plant Science, 7, 153.Pitrat, M. (2016). Melon genetic resources: Phenotypic diversity and horticultural taxonomy. In R. Grumet, N. Katzir y J. García-Mas (eds.), Genetics and genomics of the Cucurbitaceae (pp. 25–60), Springer International Publishing AG 2016.Qin, X., Coku, A., Inoue, K., & Tian, L. (2011). Expression, subcellular localization, and cis-regulatory structure of duplicated phytoene synthase genes in melon (Cucumis melo L.). Planta, 234(4), 737–748.Revers, F., & García, J. A. (2015). Molecular biology of potyviruses. Advances in Virus Research, 92, 101–199.Rodamilans, B., Valli, A., Mingot, A., San León, D., Baulcombe, D., López-Moya, J. J., & García, J. A. (2015). RNA polymerase slippage as a mechanism for the production of frameshift gene products in plant viruses of the Potyviridae family. Journal of Virology, 89(13), 6965–6967.Schaefer, B. C. (1995). Revolutions in rapid amplification of cDNA ends: New strategies for polymerase chain-reaction cloning of full-length cDNA ends. Analytical Biochemistry, 227(2), 255–273.Thole, V., Worland, B., Snape, J. W., & Vain, P. (2007). The pCLEAN dual binary vector system for Agrobacterium-mediated plant transformation. Plant Physiology, 145(4), 1211–1219.Zhang, Y., Butelli, E., & Martin, C. (2014). Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology, 19, 81–90

    Brazilian melon landraces resistant to Podosphaera xanthii are unique germplasm resources

    Full text link
    "This is the peer reviewed version of the following article: [FULL CITE], which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Podosphaera xanthii is the most important causal agent of powdery mildew in melon, a crop ranked within the most economically important species worldwide. The best strategy to face this fungus disease, which causes important production losses, is the development of genetically resistant cultivars. Genetic breeding programmes require sources of resistance, and a few ones have been reported in melon, mostly in Momordica and Acidulus horticultural groups. However, the existence of many races that reduces the durability of the resistance makes necessary to find new resistant genotypes with different genetic backgrounds. In this work, Brazilian germplasm, together with a set of Indian landraces, and the COMAV¿s (Institute for the Conservation and Breeding of Agricultural Biodiversity) melon core collection, representing the whole variability of the species, were assessed for resistance against some common races in Spain and Brazil and genotyped with a 123-SNP (single nucleotide polymorphisms) genotyping platform to study the molecular relationships of the resistant accessions. In the first experiment, carried out in Valencia (Spain) in 2013, seventy-nine melon accessions were evaluated using artificial inoculation. Five accessions selected as resistant were also evaluated against races 1, 3, and 5 in Mossoró (Brazil, 2015) and against race 3.5 in Valencia (2016) under greenhouse conditions, and under four field conditions in Brazil. The accessions, AL-1, BA-3, CE-3, and RN-2, within the Brazilian collection, presented resistance against all the races of P. xanthii assayed in all conditions tested. AL-1, CE-3 and RN-2 were molecularly more similar to wild agrestis and Acidulus melons from Asia and Africa, while BA-3 grouped with Momordica types. Molecular analysis also confirmed that these new Brazilian sources of resistance differ from those previously reported, constituting interesting materials to encourage genetic breeding programmes, especially in Brazil and Spain.This work was supported by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq ( Processes: 485739/2013-5; 312315/2013-9) and CAPES-DPGU (294/2013) and by the projects funded by the Ministerio de Economia y Competitividad AGL2014-53398-C2-1-R and AGL2014-53398-C2-2-R (jointly funded by FEDER). We also thank Sakata Seed Sudamerica Ltda for the inoculum source for the different P. xanthii races employed.Nunes, EWLP.; Esteras Gómez, C.; Ricarte, AO.; Martínez-Pérez, EM.; Gómez-Guillamon, ML.; Nunes, GHS.; Picó Sirvent, MB. (2017). Brazilian melon landraces resistant to Podosphaera xanthii are unique germplasm resources. Annals of Applied Biology. 171(2):214-228. https://doi.org/10.1111/aab.12370S214228171

    Procalcitonin and C-reactive protein as early markers of anastomotic leak after laparoscopic colorectal surgery within an enhanced recovery after surgery (ERAS) program

    Get PDF
    Background: C-reactive protein (CRP) and procalcitonin (PCT) have been described as good predictors of anastomotic leak after colorectal surgery, obtaining the highest diagnostic accuracy on the 5th postoperative day. However, if an enhanced recovery after surgery (ERAS) program is performed, early predictors are needed in order to ensure a safe and early discharge. The aim of this study was to investigate the efficacy of CRP, PCT, and white blood cell (WBC) count determined on first postoperative days, in predicting septic complications, especially anastomotic leak, after laparoscopic colorectal surgery performed within an ERAS program. Methods: We conducted a prospective study including 134 patients who underwent laparoscopic colorectal surgery within an ERAS program between 2015 and 2017. The primary endpoint investigated was anastomotic leak. CRP, PCT, and WBC count were determined in the blood sample extracted on postoperative day 1 (POD 1), POD 2 and POD 3. Results: Anastomotic leak (AL) was detected in 6 patients (4.5%). Serum levels of CRP and PCT, but not WBC, determined on POD 1, POD 2, and POD 3 were significantly higher in patients who had AL in the postoperative course. Using ROC analysis, the best AUC of the CRP and PCT levels was on POD 3 (0.837 and 0.947, respectively). A CRP cutoff level at 163 mg/l yielded 85% sensitivity, 80% specificity, and 99% negative predictive value (NPV). A PCT cutoff level at 2.5 ng/ml achieved 85% sensitivity, 95% specificity, 44% positive predictive value, and 99% NPV. Conclusions: CRP and PCT are relevant markers for detecting postoperative AL after laparoscopic colorectal surgery. Furthermore, they can ensure an early discharge with a low probability of AL when an ERAS program is performed

    Diminuição do tempo ventilatório mediante protocolo de desconexão multidisciplinar. Estudo piloto

    Get PDF
    Objective: compare ventilatory time between patients with the application of a disconnection protocol, managed in a coordinated way between doctor and nurse, with patients managed exclusively by the doctor. Method: experimental pilot study before and after. Twenty-five patients requiring invasive mechanical ventilation for 24 hours or more were included, and the protocol-guided group was compared with the protocol-free group managed according to usual practice. Results: by means of the multidisciplinary protocol, the time of invasive mechanical ventilation was reduced (141.94 ± 114.50 vs 113.18 ± 55.14; overall decrease of almost 29 hours), the time spent on weaning (24 hours vs 7.40 hours) and the numbers of reintubation (13% vs 0%) in comparison with the group in which the nurse did not participate. The time to weaning was shorter in the retrospective cohort (2 days vs. 5 days), as was the hospital stay (7 days vs. 9 days). Conclusion: the use of a multidisciplinary protocol reduces the duration of weaning, the total time of invasive mechanical ventilation and reintubations. The more active role of the nurse is a fundamental tool to obtain better results.Objetivo: comparar el tiempo ventilatorio entre pacientes sometidos a desconexión según un protocolo manejado de forma coordinada por el médico y la enfermera con el mismo tiempo en pacientes manejados exclusivamente por el médico. Método: estudio piloto experimental antes y después. Se incluyeron a 25 pacientes que requirieron ventilación mecánica invasiva durante 24 horas o más, y se comparó el grupo orientado por protocolo con el grupo sin protocolo, manejado según la práctica habitual. Resultados: mediante el protocolo multidisciplinar se logró disminuir el tiempo de ventilación mecánica invasiva (141,94 ± 114,50 vs. 113,18 ± 55,14; disminución global de casi 29 horas), el tiempo empleado en el destete (24 horas vs. 7,40 horas) y las cifras de reintubación (13 % vs. 0%) en comparación con el grupo en el que no participó la enfermera. El tiempo hasta iniciar el destete fue menor en la cohorte retrospectiva (2 días vs. 5 días), así como también la estancia hospitalaria (7 días vs. 9 días). Conclusión: la adopción de un protocolo multidisciplinar disminuye la duración del destete, el tiempo total de ventilación mecánica invasiva y las reintubaciones. El papel más activo de la enfermera se considera una herramienta fundamental para obtener mejoras en los resultados.Objetivo: comparar o tempo ventilatório em pacientes submetidos a desconexão segundo um protocolo conduzido de forma coordenada pelo médico e pela enfermeira com o mesmo tempo em pacientes tratados exclusivamente pelo médico. Método: estudo piloto experimental antes e depois. Foram incluídos 25 pacientes que precisaram de ventilação mecânica invasiva durante 24 horas ou mais, e o grupo orientado por protocolo foi comparado com o grupo sem protocolo, tratado conforme a prática habitual. Resultados: mediante o protocolo multidisciplinar, conseguiu-se reduzir o tempo de ventilação mecânica invasiva (141,94 ± 114,50 vs. 113,18 ± 55,14; redução global de quase 29 horas), o tempo empregado no desmame (24 horas vs. 7,40 horas) e as cifras de reintubação (13% vs. 0%) em comparação com o grupo em que não houve participação da enfermeira. O tempo até iniciar o desmame foi menor na coorte retrospectiva (2 dias vs. 5 dias), bem como a internação hospitalar (7 dias vs. 9 dias). Conclusão: a adoção de um protocolo multidisciplinar diminui a duração do desmame, o tempo total de ventilação mecânica invasiva e as reintubações. O papel mais ativo da enfermeira é considerado uma ferramenta fundamental para obter melhorias nos resultados
    corecore