404 research outputs found

    Fractional semantics for classical logic

    Get PDF
    This article presents a new (multivalued) semantics for classical propositional logic. We begin by maximally extending the space of sequent proofs so as to admit proofs for any logical formula; then, we extract the new semantics by focusing on the axiomatic structure of proofs. In particular, the interpretation of a formula is given by the ratio between the number of identity axioms out of the total number of axioms occurring in any of its proofs. The outcome is an informational refinement of traditional Boolean semantics, obtained by breaking the symmetry between tautologies and contradictions

    The Implicit Commitment of Arithmetical Theories and Its Semantic Core

    Get PDF
    According to the implicit commitment thesis, once accepting a mathematical formal system S, one is implicitly committed to additional resources not immediately available in S. Traditionally, this thesis has been understood as entailing that, in accepting S, we are bound to accept reflection principles for S and therefore claims in the language of S that are not derivable in S itself. It has recently become clear, however, that such reading of the implicit commitment thesis cannot be compatible with well-established positions in the foundations of mathematics which consider a specific theory S as self-justifying and doubt the legitimacy of any principle that is not derivable in S: examples are Tait’s finitism and the role played in it by Primitive Recursive Arithmetic, Isaacson’s thesis and Peano Arithmetic, Nelson’s ultrafinitism and sub-exponential arithmetical systems. This casts doubts on the very adequacy of the implicit commitment thesis for arithmetical theories. In the paper we show that such foundational standpoints are nonetheless compatible with the implicit commitment thesis. We also show that they can even be compatible with genuine soundness extensions of S with suitable form of reflection. The analysis we propose is as follows: when accepting a system S, we are bound to accept a fixed set of principles extending S and expressing minimal soundness requirements for S, such as the fact that the non-logical axioms of S are true. We call this invariant component the semantic core of implicit commitment. But there is also a variable component of implicit commitment that crucially depends on the justification given for our acceptance of S in which, for instance, may or may not appear (proof-theoretic) reflection principles for S. We claim that the proposed framework regulates in a natural and uniform way our acceptance of different arithmetical theories

    Implementing clinical guidelines in an organizational setup

    Get PDF
    Outcomes research in healthcare has been a topic much addressed in recent years. Efforts in this direction have been supplemented by work in the areas of guidelines for clinical practice and computer-interpretable workflow and careflow models.In what follows we present the outlines of a framework for understanding the relations between organizations, guidelines, individual patients and patient-related functions. The derived framework provides a means to extract the knowledge contained in the guideline text at different granularities, in ways that can help us to assign tasks within the healthcare organization and to assess clinical performance in realizing the guideline. It does this in a way that preserves the flexibility of the organization in the adoption of the guidelines

    Fractional-valued modal logic and soft bilateralism

    Get PDF
    In a recent paper, under the auspices of an unorthodox variety of bilateralism, we introduced a new kind of proof-theoretic semantics for the base modal logic K, whose values lie in the closed interval [0, 1] of rational numbers. In this paper, after clarifying our conception of bilateralism – dubbed “soft bilateralism” – we generalize the fractional method to encompass extensions and weakenings of K. Specifically, we introduce well-behaved hypersequent calculi for the deontic logic D and the non-normal modal logics E and M and thoroughly investigate their structural properties

    Non-contractive logics, paradoxes, and multiplicative quantifiers

    Get PDF
    The paper investigates from a proof-theoretic perspective various non-contractive logical systems, which circumvent logical and semantic paradoxes. Until recently, such systems only displayed additive quantifiers (Grišin and Cantini). Systems with multiplicative quantifiers were proposed in the 2010s (Zardini), but they turned out to be inconsistent with the naive rules for truth or comprehension. We start by presenting a first-order system for disquotational truth with additive quantifiers and compare it with Grišin set theory. We then analyze the reasons behind the inconsistency phenomenon affecting multiplicative quantifiers. After interpreting the exponentials in affine logic as vacuous quantifiers, we show how such a logic can be simulated within a truth-free fragment of a system with multiplicative quantifiers. Finally, we establish that the logic for these multiplicative quantifiers (but without disquotational truth) is consistent, by proving that an infinitary version of the cut rule can be eliminated. This paves the way to a syntactic approach to the proof theory of infinitary logic with infinite sequents

    Fractional-valued modal logic

    Get PDF
    This paper is dedicated to extending and adapting to modal logic the approach of fractional semantics to classical logic. This is a multi-valued semantics governed by pure proof-theoretic considerations, whose truth-values are the rational numbers in the closed interval [0,1] . Focusing on the modal logic K, the proposed methodology relies on three key components: bilateral sequent calculus, invertibility of the logical rules, and stability (proof-invariance). We show that our semantic analysis of K affords an informational refinement with respect to the standard Kripkean semantics (a new proof of Dugundji’s theorem is a case in point) and it raises the prospect of a proof-theoretic semantics for modal logic

    Molecular biology meets Logic : context-sensitiveness in focus

    Get PDF
    Some real life processes, including molecular ones, are context-sensitive, in the sense that their outcome depends on side conditions that are most of the times difficult, or impossible, to express fully in advance. In this paper, we survey and discuss a logical account of context-sensitiveness in molecular processes, based on a kind of non-classical logic. This account also allows us to revisit the relationship between logic and philosophy of science (and philosophy of biology, in particular)
    corecore