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Abstract6

In a recent paper, under the auspices of an unorthodox variety of bilateralism,7

we introduced a new kind of proof-theoretic semantics for the base modal logic8

K, whose values lie in the closed interval [0, 1] of rational numbers [13]. In this9

paper, after clarifying our conception of bilateralism – dubbed “soft bilateralism”10

– we generalize the fractional method to encompass extensions and weakenings of11

K. Specifically, we introduce well-behaved hypersequent calculi for the deontic12

logic D and the non-normal modal logics E and M and thoroughly investigate13

their structural properties.14

Keywords. Modal logic 03B45; proof theory, general (including proof-theoretic15

semantics) 03F03; many-valued logics 03B50.16

1. Introduction17

From a general perspective, the distinctive aspect of bilateralism is that it18

recognizes and isolates two different dimensions of logic which are placed19

on a par: assertion and denial. Although often neglected in the history20

of logic, denial can be seen as a perfectly sensible logical notion which21

follows its own specific inferential trajectories [6, 17]. Since the notion of22

logical denial admits several consistent meanings, the proper logical realm23

of bilateralism is still a matter of philosophical controversy. Therefore,24

over the last few decades, various proposals concerning the possibility of a25

bilateral reading of logic have flourished [19, 4, 22, 17].26

.
.
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On the one hand, Rumfitt has argued that the natural theoretical back-27

drop against which bilateralism takes place is classical logic; and in ef-28

fect, bilateralism has traditionally been adopted to give a coherent proof-29

theoretic account of classical logic. On the other hand, more recently, this30

view has been challenged by Kürbis, who claims that a bilateral account31

of intuitionistic logic is also possible [8, 9]. This stance seems perfectly32

sensible, as the acts of assertion and denial can also be rephrased in proper33

intuitionistic terms.34

In what follows, we propose a particular conception of bilateralism,35

which can accommodate non-classical logics or extensions of classical logic,36

such as substructural logics and modal logic. As it is well known, the37

notion of denial in bilateralism is primitive and cannot be reduced to the38

assertion of a negation. Our proposal is based on interpreting the act39

of denial by means of the logically “soft” notion of rejection. A formula40

A can be considered as rejected just in case it does not admit a proof41

within the reference system. For example, in classical propositional logic42

contradictions and truth-functional contingencies all qualify as rejectable43

formulas [18]. This is why we label this type of bilateralism as “soft”44

to distinguish it from other narrower interpretations, whereby denial is45

logically analyzed as refutation, i.e. in terms of a derivation of grounds for46

the denial of the proposition.47

In this paper, we introduce calculi for a family of modal logics that48

operate within a soft bilateral framework by combining rules for handling49

derivable as well as underivable sequents.1 This hybrid approach to infer-50

ence rules is both technically useful, as it allows for a more comprehensive51

understanding of the logic without reducing it to the set of its theorems,52

and conceptually profound, as it is closely linked to the venerable notion of53

analyticity, which is essential for manipulating information about underiv-54

ability in a well-behaved proof-theoretic setting.55

Mainstream proof-theoretic semantics embraces the meaning-as-use pa-56

radigm, which entails shifting the focus from analyzing truth-conditions to57

understanding the inference patterns that govern the recursive construc-58

tion of proofs [21, 15, 5]. In proof-theoretic semantics, the meaning of59

connectives is primarily conveyed through the top-down reading of their60

respective introduction rules.61

1Proof-systems combining together rules for dealing with valid and invalid syntactic
expressions are sometimes called ‘hybrid’ in the literature on rejection systems [20, 6].
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As standard bilateralism is conceptually linked to proof-theoretic se-62

mantics, our account of bilateralism also yields its peculiar semantics in63

terms of proofs, which we call fractional semantics. While proof-theoretic64

semantics is mainly concerned with intuitionistic logic, we have recently65

shown how a fractional semantics can be provided for a wide class of log-66

ics, including classical logic [12], the minimal normal modal logic K [13],67

and the multiplicative-additive fragment of linear logic MALL [14].68

The term “fractional” is used to describe semantics in which formulas69

are interpreted as values in the closed interval [0, 1] of rational numbers.70

In the fractional setting, a reference proof system is used as an algorithm71

to decompose a formula A into a set of clauses C(A), which are ordinary72

sequents in the case of classical logic, and hypersequents when K and MALL73

are being analyzed. The interpretation of A, denoted by JAK, is obtained by74

calculating the ratio of true clauses in C(A) to the total number of clauses75

produced by the decomposition. This interpretation function measures the76

degree to which A is satisfied, or the “quantity of truth” in A2. Needless77

to say, we must be able to carry out such a decomposition for any formula78

A in the language, including the case in which A is neither provable nor79

refutable. Therefore, a “soft” variety of bilateralism is necessary to ensure80

that this is possible.81

Methodologically, the proof-theoretic platform on which the fractional82

evaluation is built needs to meet the following requirements:83

• Invertibility: for each logical rule in the calculus, the derivability84

of the conclusion always implies the derivability of (each of) the85

premise(s).86

• Stability: any complete decomposition of the endsequent (end-hyper-87

sequent) always returns the same set of top-sequents (top-hyperse-88

quents).89

• Termination of the proof search: any decomposition of a given end-90

sequent (end-hypersequent) always terminates yielding either a proof91

2In interpreting the formulas of classical logic, we use Kleene’s system G4 enriched
with a ‘complementary’ axiom introducing whatever clause Γ ⊢ ∆ such that Γ ∩∆ = ∅
[12]. Consider for instance the formula A ≡ p → (p∧q). The enriched system decomposes

it into the set of clauses {p ⊢ p; p ⊢ q}, so that JAK = 1/2 = 0.5. Actually, this formula
can be rewritten as (p → p) ∧ (p → q) and this form clearly displays that fact that A is
formed by two components of which only one displays an identity.
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or a rejection.92

On one hand, invertibility and termination guarantee the possibility of93

turning any set of clauses C(A) into some sort of canonical form for A (its94

conjunctive normal form, in classical logic). On the other hand, stability95

is what allows us to call the described fractional evaluation a ‘semantics’,96

making the value JAK a derivation-invariant.97

The technical aim of this paper is to extend the fractional approach98

proposed for modal logic to other systems beyond K. After reviewing99

the main proof-theoretic ingredients, the paper shows how to apply the100

fractional approach to basic deontic logic D as well as non-normal modal101

logics E and M. E is the minimal non-normal modal logic characterized102

by neighborhood semantics. M extends E by introducing the axiom of103

distributivity of □ over conjunction. The paper investigates the structural104

properties of these systems and establishes the admissibility of the rules105

of weakening, contraction, and cut using purely finitary and constructive106

methods.107

2. The systems108

2.1. Separating modality and classicality109

As we have remarked above, in order to apply the fractional method to110

modal logic, we need to design a calculus which meets some proof-theoretic111

desiderata. In particular, stability, finiteness of the proof-search space and112

invertibility..113

Achieving finiteness of the proof-search space is perhaps the most del-114

icate item when dealing with non-classical logics or extensions of classical115

logic. In fact, if we stick to a standard sequent calculus setting, we of-116

ten lose invertibility. On the other hand, if we supplement the structure117

of sequents, we can obtain invertible rules, but often at the cost of losing118

finiteness of the proof-search space.119

To meet all of these requirements, we find it natural to switch to a hy-120

persequent formulation of the modal logics we are considering. The use of121

hypersequents proves to be well-suited as it maintains a strong version of122

the formula interpretation, meaning that any syntactic object can be inter-123

preted as a formula in the language. Furthermore, hypersequents provide a124
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way to disentangle the classical content of a sequent from its modal resid-125

ual elements, which is a key step in obtaining finiteness of the proof-search126

space.127

2.2. The calculus HK128

We shall be mainly working with hypersequents, introduced under a differ-
ent name by Mints in the early seventies of the last century [11, 10] and
independently by Pottinger [16], then further elaborated (and so named)
by Avron [1, 2, 3]. Hypersequents come as a generalization of the standard
notion of sequent in the style of Gentzen. A sequent is a syntactic expres-
sion of the form Γ ⇒ ∆, where Γ,∆ are finite multisets of modal formulas
from the set F recursively defined by the grammar:

F ::= AT | ¬F |F → F |F ∧ F |F ∨ F |□F

with AT collecting the atomic sentences. As usual, ♢A is taken to abridge129

the formula ¬□¬A. If Γ = [A1, A2, . . . , An], then
∧

Γ and
∨

Γ are the two130

formulas A1 ∧A2 ∧ · · · ∧An and A1 ∨A2 ∨ · · · ∨An, respectively. If Γ = ∅,131

then we set
∧
Γ = ⊤ and

∨
Γ = ⊥, where ⊤ and ⊥ stand for an arbitrarily132

selected tautology and contradiction, respectively. With □Γ we mean the133

multiset [□A1,□A2, . . . ,□An]. For any formula A we denote with An the134

multiset containing exactly n occurrences of A.135

In general, if M and N are two multisets, we indicate with M ⊎N and
#M their multiset union andM ’s cardinality, respectively. A hypersequent,
denoted by G,H, . . ., is defined as a finite (possibly empty) multiset of
sequents written as follows:

Γ1 ⇒ ∆1 |Γ2 ⇒ ∆2 | · · · |Γn ⇒ ∆n.

We shall keep calling ‘sequents’ those hypersequents listing exactly one136

sequent. The set collecting hypersequents is here indicated with H . Prac-137

tically speaking, a hypersequent G turns out to be valid whenever at least138

one of the sequents listed in G is valid. Here the meaning of the term ‘valid’139

has to be specified in progress, depending on the logical context.140

The following definition introduces the notion of hyperclause which ex-141

tends that of clause for standard sequents of classical logic.142

Definition 2.1 (Hyperclauses). A hyperclause is a hypersequent
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Γ1 ⇒ ∆1 | · · · |Γn ⇒ ∆n

such that no rule of the calculus can be upwardly applied to it. An iden-143

tity hyperclause is such that, for some i, Γi ⊎ ∆i ̸= ∅; otherwise, it is144

complementary.145

Example 2.2. An identity hyperclause and a complementary hyperclause,
respectively:

p ⇒ p |□(□p → p) ⇒ ⇒ p | ⇒ p |□(□p → p) ⇒

Figure 1 presents the ‘softly’ bilateral hypersequent calculus HK. The146

rules of HK operate on hypersequents prefixed by the symbols ‘⊢’ and ‘⊣ ’:147

we write ⊢ G and ⊣ G to assert the validity and invalidity of G, respec-148

tively. For the sake of a more compact notation, in Figure 1 the HK rules149

are expressed by writing 1 and 0 to indicate the two signs ‘⊢’ and ‘⊣ ’,150

respectively. The calculus is equipped with two axiom rules: the ordinary151

ax-rule introduces any identity hyperclause, whilst the ax-rule specifically152

introduces complementary hyperclauses.153

From now on, we will indicate derivations with small Greek letters154

π, ρ, . . .. We recall that the height h(π) of a derivation π is given by the155

number of hypersequents figuring in one of its longest branches. Moreover,156

we indicate with top(π) the multiset of π’s top-hypersequents.157

Example 2.3. Figure 2 displays a HK-derivation ending in ⊣⇒ □(□p →158

p) → □p , that is a formal rejection for the sequent ⇒ □(□p → p) → □p.159

Remark 2.4. The □-rule is the only inference schema in which the hy-160

persequent structure comes effectively into play. Intuitively speaking, a161

□-application in its bottom-up reading allows us to decompose a sequent-162

component in a hypersequent by splitting its classical part from modal163

residues. In fact, each time the rule is applied, a new hypersequent com-164

ponent is added, thus starting a parallel derivation.165

Furthermore, notice that the side condition on the □-rule about con-166

texts Γ′ and ∆′ is crucial to avoid pathological situations like the one167

indicated below, in which HK proves both ⊢ G and ⊣ G.168

169
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axioms

ax
1 □Π1,Γ1, p ⇒ ∆1, p | · · · |□Πn,Γn ⇒ ∆n

ax where Γi ∩∆i = ∅ for each 1 ⩽ i ⩽ n
0 □Π1,Γ1 ⇒ ∆1 | · · · |□Πn,Γn ⇒ ∆n

logical rules

i G |Γ ⇒ ∆, A
¬ ⇒

i G |Γ,¬A ⇒ ∆

i G |A,Γ ⇒ ∆
⇒ ¬

i G |Γ ⇒ ∆,¬A

i G |Γ, A,B ⇒ ∆
∧ ⇒

i G |Γ, A ∧B ⇒ ∆

i G |Γ ⇒ ∆, A
j
G |Γ ⇒ ∆, B

⇒ ∧
i·j

G |Γ ⇒ ∆, A ∧B

i G |Γ, A ⇒ ∆
j
G |Γ, B ⇒ ∆

∨ ⇒
i·j

G |Γ, A ∨B ⇒ ∆

i G |Γ ⇒ ∆, A,B
⇒ ∨

i G |Γ ⇒ ∆, A ∨B

i G |Γ ⇒ ∆, A
j
G |Γ, B ⇒ ∆ →⇒

i·j
G |Γ, A → B ⇒ ∆

i G |Γ, A ⇒ ∆, B ⇒→
i G |Γ ⇒ ∆, A → B

modal operator rule

i G |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′
□ ,

i G |□Γ,Γ′ ⇒ □A,□∆,∆′
where Γ′ ⊎∆′ ⊆ AT

Figure 1. The HK sequent calculus (read 1 as ⊢ and 0 as ⊣).
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ax⊣⇒ p | ⇒ p |□(□p → p) ⇒
□⊣⇒ □p, p |□(□p → p) ⇒

ax.
⊢ p ⇒ p |□(□p → p) ⇒ →⇒

⊣ □p → p ⇒ p |□(□p → p) ⇒
□⊣ □(□p → p) ⇒ □p ⇒→

⊣⇒ □(□p → p) → □p

Figure 2. An example of HK proof

ax
⊢ t | p ⇒ p

□⊢ p ⇒ p,□t

ax
⊢ t ⇒ t |□t ⇒ p

□⊢ p,□t ⇒ □t →⇒
⊢ p, p → □t ⇒ □t

ax
⊢⇒ t | p ⇒ p

ax⊣⇒ t | p,□t ⇒ →⇒
⊣⇒ t | p, p → □t ⇒

□⊣ p, p → □t ⇒ □t

170

The other modal systems are obtained by adjusting the system HK as171

indicated below.172

• HD is obtained by adding to HK the rule:173

i G |Π ⇒ Σ |Γ ⇒
d where Π,Σ ⊂ AT

i G |□Γ,Π ⇒ Σ
174

and by revising the ax-rule as follows:175

where Γi,∆i ⊂ AT
⊣ Γ1 ⇒ ∆1 | . . . |Γn ⇒ ∆n

176

• HM is obtained by substituting the □-rule in HK with the following177

inference pattern:178

i G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,Σ
m

i G |□A1, . . . ,□An,Π ⇒ □∆,□B,Σ
179

where Π,Σ are multisets of atomic formulas, i ∈ {1, ...,m}, and j ∈180

{1, ..., n}. We also need to replace the ax-rule with the following181

version:182

where Γi,∆i ⊂ AT
⊣ □Π1,Γ1 ⇒ ∆1 | . . . |Γn ⇒ ∆n,□Σn

183
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• The system HE is obtained from HK by replacing the □-rule with the184

following inference schema:185

i G | [⇒ Ai ↔ Bj ] |Γ ⇒ ∆
e

i G |□A1, ...,□Am,Γ ⇒ ∆,□B1, ...,□Bn

186

where Γ,∆ are multisets of atomic formulas and i ∈ {1, ...,m} and187

j ∈ {1, ..., n}. We also need to replace the ax-rule with the following188

version:189

where Γi,∆i ⊂ AT
⊣ □Π1,Γ1 ⇒ ∆1 | . . . |Γn ⇒ ∆n,□Σn

190

3. Structural analysis191

In this section we spell out the details of a purely syntactical cut-elimination192

procedure for these systems. In a previous work [14], cut-elimination was193

established in the form of closure under cut due to soundness and complete-194

ness of the system. We shall now give a purely syntactic proof thereof.195

We recall the standard proof-theoretic definitions and measures. In196

particular, the degree of a formula is defined as the number of occurrences197

of connectives in it.198

We also recall that a rule is height-preserving admissible when (i) the199

derivability of the premises entails the derivability of the conclusion and200

(ii) the height of the conclusion’s derivation does not exceed that of the201

derivations of the premises. Additionally, we need the following notation:202

given a calculus HX, we denote by HX the calculus obtained by removing203

its complementary axiom.”204

Lemma 3.1. The rules of the calculus HK are height-preserving invertible.205

Proof: The proof is by induction on the height of the derivation of the
conclusion of the rule. We consider only the case of the modal operator,
the other ones are routine. Given a hypersequent shaped as

⊢ G |□Γ,Γ′ ⇒ □A,□∆,∆′,

by inspection of the rules of the system, it can only come as a conclusion206

of the □-rule. On the other hand, if □A is the principal formula, then the207
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⊢ G |Γ ⇒ ∆
LW

⊢ G |A,Γ ⇒ ∆

⊢ G
EW

⊢ G |H
⊢ G |A,A,Γ ⇒ ∆

LC
⊢ G |A,Γ ⇒ ∆

⊢ G |Γ ⇒ ∆
RW

⊢ G |Γ ⇒ ∆, A

⊢ G |Γ ⇒ ∆ |Γ ⇒ ∆
EC

⊢ G |Γ ⇒ ∆

⊢ G |Γ ⇒ ∆, A,A
RC

⊢ G |Γ ⇒ ∆, A

⊢ G |Γ ⇒ ∆, A ⊢ H |A,Π ⇒ Σ
Cut

⊢ G |H |Γ,Π ⇒ ∆,Σ

Figure 3. Admissible structural rules

premise is the desired conclusion. If the principal formula is a formula in208

□∆, say □B, then we have:209

⊢ G |Γ ⇒ B |□Γ,Γ′ ⇒ □A,□∆′′,∆′
□⊢ G |□Γ,Γ′ ⇒ □A,□∆′′,□B,∆′210

Since the height gets decreased, we can apply the induction hypothesis211

which yields a derivation ending in ⊢ G |Γ ⇒ B |□Γ,Γ′ ⇒ □A,□∆′′,∆′.212

The desired conclusion then follows by a final application of the □-rule.213

Lemma 3.2. The weakening rules (EW ), (LW ) and (RW ) are both admis-214

sible.215

Proof: Admissibility of the rule of external weakening (EW ) follows from216

a straightforward induction on the height of derivations. On the contrary,217

to establish the admissibility of the weakening rules (LW ) and (RW ) we218

need to argue by double induction, with the main induction hypothesis on219

the degree of the formula to be added and the secondary induction hypoth-220

esis on the height of the derivation under consideration. In particular:221

If n = 0, then if the hypersequent ⊢ G |□Γ,Γ′ ⇒ ∆ is derivable, so are222

both ⊢ G |A,□Γ,Γ′ ⇒ ∆ and ⊢ G |□Γ,Γ′ ⇒ ∆, A.223

If n > 0 and the last rule is not a □-application, then we apply the224

secondary induction hypothesis to the premise(s) and then the rule again.225

Otherwise, if the last rule applied is a □-application, we distiguish three226

subcases.227

• If A is an atomic formula, then we apply the secondary induction228

hypothesis and then the rule again.229
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• If A is a modal formula □B we have:230

⊢ G |Γ ⇒ C |□Γ,Γ′ ⇒ □∆,∆′
□⊢ G |□Γ,Γ′ ⇒ □C,□∆,∆′231

If we want to add □B to the succedent we can simply apply the232

secondary induction hypothesis and then the rule again. Otherwise,233

we get the following configuration:234

⊢ G |Γ ⇒ C |□Γ,Γ′ ⇒ □∆,∆′
LW

⊢ G |Γ ⇒ C |□Γ,□B,Γ′ ⇒ □∆,∆′
LW

⊢ G |Γ, B ⇒ C |□Γ,□B,Γ′ ⇒ □∆,∆′
□⊢ G |□Γ,Γ′,□B,⇒ □C,□∆,∆′

235

The first application of LW is removed by secondary induction hy-236

pothesis, while the second by the primary induction hypothesis.237

• It remains to consider the case in which A is a formula whose principal238

connective is one among ∧, ∨, and →. In these case, we decompose239

the formula A by applying invertibility of the rules for the classical240

connectives, then we add the formulas as described in the preceding241

subcases.242243

Lemma 3.3. The rules of contraction (LC) and (RC) and external con-244

traction (EC) are all height-preserving admissible.245

Proof: By simultaneous induction on the height of derivations. External246

contraction follows by a straightforward induction on the height of the247

derivation under analysis by applying height-preserving invertibility of the248

logical rules.249

Internal contraction is slightly more delicate to handle. The critical
situation is the one in which we have a hypersequent ⊢ G |□Γ,Γ′ ⇒
□A,□A,□∆,∆′ and the formula □A is principal in the last rule applied.
In this case, we consider the premise

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □A,□∆,∆′

and we proceed in the following way250
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⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □A,□∆,∆′

Inv-□⊢ G |Γ ⇒ A |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′
EC

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′
□⊢ G |□Γ,Γ′ ⇒ □A,□∆,∆′

251

252

Theorem 3.4. The cut-rule is admissible.253

Proof: The proof is by double induction with main induction hypothesis254

on the degree of the cut-formula and the secondary induction hypothesis255

on the sum of the height of the derivation of the premises of the cut.256

We distinguish the following cases. If the right premise of the cut is257

an initial sequent, then, when the cut formula is not active, we remove it.258

Otherwise, the conclusion follows by weakening.259

If the right premise of the cut is the conclusion of a logical rule different260

from □ , we distinguish two subcases according to whether the cut-formula261

is principal or not. In the former case, we apply the invertibility of the262

corresponding rule and we replace the cut-application under consideration263

with cuts on formulas of smaller degree. In the latter case we permute the264

cut upwards.265

If the last inference step is a □-application, then the cut-formula is266

either atomic or a modal formula. In both cases, we argue by induction on267

the left premise of the cut. The relevant case is the one in which the last268

rule applied is □ . We have:269

270

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′
□⊢ G |□Γ,Γ′ ⇒ □∆,□A,∆′

⊢ H |A,Π ⇒ B |□A,□Π,Π′ ⇒ □Σ,Σ′
□⊢ H |□A,□Π,Π′ ⇒ □Σ,□B,Σ′

Cut⊢ G |H |□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,□B,∆′,Σ′
271

The cut is removed as follows (we avoid writing the contexts for better272

readability). First, we apply a cross-cut:273

⊢ □Γ,Γ′ ⇒ □∆,□A,∆′ ⊢ A,Π ⇒ B |□A,□Π,Π′ ⇒ □Σ,Σ′
Cut⊢ A,Π ⇒ B |□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,∆′,Σ′274

The cut is removed by applying the secondary induction hypothesis. The275

reduction is then completed as follows:276
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277

⊢ Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′ ⊢ A,Π ⇒ B |□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,∆′,Σ′
Cut

⊢ Γ,Π ⇒ B |□Γ,Γ′ ⇒ □∆,∆′ |□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,∆′,Σ′
LW,RW

⊢ Γ,Π ⇒ B | (□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,∆′,Σ′)2
EC⊢ Γ,Π ⇒ B |□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,∆′,Σ′

□⊢ □Γ,□Π,Γ′,Π′ ⇒ □∆,□B,□Σ,∆′,Σ′

278

where the cut-rule is removed by primary induction hypothesis on the de-279

gree of the cut-formula.280

We consider now the system HD. In this case the analysis proceeds281

analogously. Of course, the admissibility of the structural rules needs to282

be established once again.283

Lemma 3.5. Every rule is height-preserving invertible in HD.284

Proof: The only new case to be detailed is the one involving the rule d.285

In this case the proof is immediate, as the only applicable rule is d which286

acts on all the formulas in the antecedents.287

Lemma 3.6. The weakening rules (EW ), (LW ) and (RW ) are admissible.288

Proof: External weakening is established by a straightforward induction289

on the height of the derivation. Proving the admissibility of W requires290

a double induction, with main induction hypothesis on the degree of the291

formula and secondary induction hypothesis on the height of derivations.292

The only new case to detail is the one involving rule d. As usual, we293

need to proceed by cases. If the formula to be added is an atomic formula,294

then we simply apply the secondary induction hypothesis and then the rule295

again. If it is a boxed formula to be added in the antecedent, then we apply296

the primary induction hypothesis on the degree of the formula and then297

the rule again.298

In the remaining cases we first decompose the formulaand we then ob-299

tain some hypersequents which contain only boxed formulas in the an-300

tecedents of the components and atomic formulas. Hence we apply the301

primary induction hypothesis and then we apply the rules in the reverse302

order.303

Lemma 3.7. The rules of contraction are height-preserving admissible.304

Proof: The proof is by induction on the height of the derivation. The305

only new case to discuss is the one involving the rule d. We have:306
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⊢ G |A,A,Γ ⇒ |Π ⇒ Σ
d

⊢ G |□A,□A,□Γ,Π ⇒ Σ
307

We proceed as follows:308

⊢ G |A,A,Γ ⇒ |Π ⇒ Σ
LC

⊢ G |A,Γ ⇒ |Π ⇒ Σ
d

⊢ G |□A,□Γ,Π ⇒ Σ

309

The application of LC is removed by the induction hypothesis on the height310

of the derivation.311

Theorem 3.8. The cut rule is admissible in HD.312

Proof: By double induction. We discuss only the new interesting case.313

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′
□⊢ G |□Γ,Γ′ ⇒ □∆,□A,∆′

⊢ H |A,Π ⇒ |Θ ⇒ Σ
d

⊢ H |□A,□Π,Θ ⇒ Σ
Cut

⊢ G |H |□Γ,□Π,Γ′,Θ ⇒ □∆,Σ,∆′
314

We proceed as follows:315

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′ ⊢ H |A,Π ⇒ |Θ ⇒ Σ
Cut

⊢ G |H |Γ,Π ⇒ |Θ ⇒ Σ |□Γ,Γ′ ⇒ □∆,∆′
d

⊢ G |H |□Γ,□Π,Θ ⇒ Σ |□Γ,Γ′ ⇒ □∆,∆′
LW,RW

⊢ G |H | (□Γ,□Π,Γ′,Θ ⇒ □∆,Σ,∆′)2
EC

⊢ G |H |□Γ,□Π,Γ′,Θ ⇒ □∆,Σ,∆′

316

The cut is replaced by a cut on a formula of smaller degree and the con-317

clusion is obtained applying the rule d followed by weakening and contrac-318

tion.319

We now consider the case ofHM. Since by now the reader should be ac-320

quainted with the strategies employed to establish the structural properties321

of this kind of calculi we shall not get into the details.322

Lemma 3.9. Every rule is height-preserving invertible.323

Proof: We deal with the rulem. If ⊢ G |□A1, . . . ,□An,Π ⇒ □∆,□B,□C,Σ324

is an initial sequent, so is ⊢ G |A1 ⇒ C | . . . |An ⇒ C |□A1, . . . ,□An,Π ⇒325
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□∆,□B,Σ. If it is the conclusion of a rule, we apply the induction hy-326

pothesis to each of the premises and then the rule again. For example, we327

have:328

⊢ G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,□C,Σ
m

⊢ G |□A1, . . . ,□An,Π ⇒ □∆,□B,□C,Σ
329

We proceed as follows:330

⊢ G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,□C,Σ
IH

⊢ G |A1 ⇒ B | . . . |An ⇒ B |A1 ⇒ C | . . . |An ⇒ C |□A1, . . . ,□An,Π ⇒ □∆,Σ
m

⊢ G |A1 ⇒ C | . . . |An ⇒ C |□A1, . . . ,□An,Π ⇒ □∆,□B,Σ

331

332

Lemma 3.10. The rules (EW ), (LW ) and (RW ) are admissible.333

Proof: EW . Straightforward by induction on the height of the derivation.334

With respect to W we argue by double induction as above with minor335

changes.336

Lemma 3.11. The rules (EC), (LC) and (RC) are height-preserving ad-337

missible.338

Proof: By induction on the height of the derivation. We deal with the339

only relevant cases.340

⊢ G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,□B,Σ
m

⊢ G |□A1, . . . ,□An,Π ⇒ □∆,□B,□B,Σ
341

We proceed as follows:342

⊢ G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,□B,Σ
Inv-m

⊢ G | (A1 ⇒ B)2 | . . . | (An ⇒ B)2 |□A1, . . . ,□An,Π ⇒ □∆,Σ
EC

⊢ G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,Σ
m

⊢ G |□A1, . . . ,□An,Π ⇒ □∆,□B,Σ

343
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If the formula to contract is in the antecedent, we proceed analogously,344

possibly exploiting external contraction and the induction hypothesis on345

the height of the derivation.346

The last step is the cut-elimination theorem.347

Theorem 3.12. The cut rule is admissible in HM.348

Proof: By double induction on the degree of the cut formula and the349

sum of the height of the derivations of the premises of the cut. We discuss350

the case in which the cut formula is principal in both the premises in an351

application of the rule m.352

353
G |A1 ⇒ C1 | . . . |An ⇒ C1 |□A1, . . . ,□An,Γ ⇒ □∆,∆′

m
G |□A1, . . . ,□An,Γ ⇒ □∆,□C1,∆

′
H |C1 ⇒ D | . . . |Cn ⇒ D |□C1, . . . ,□Cn,Π ⇒ □Σ,Σ′

m
H |□C1, . . . ,□Cn,Π ⇒ □Σ,□D,Σ′

Cut
G |H |□A1, . . . ,□An,Γ,□C2, . . . ,□Cn,Π ⇒ □Σ,□D,Σ′,□∆,∆′

354

We construct the following derivation (we omit the contexts for better355

readability):356

⊢ □A1, . . . ,□Am,Γ ⇒ □∆,□C1,∆
′ ⊢ C1 ⇒ D | . . . |Cn ⇒ D |□C1, . . . ,□Cn,Π ⇒ □Σ,Σ′

Cut
⊢ C1 ⇒ D | . . . |Cn ⇒ D |□A1, . . . ,□Am,Γ,□C2, . . . ,□Cn,Π ⇒ □Σ,Σ′,□∆,∆′357

The cut is removed by secondary induction hypothesis. Next, we cut on C1.358

We write S as an abbreviation for ⊢ □A1, . . . ,□Am,Γ,□C2, . . . ,□Cn,Π ⇒359

□Σ,Σ′,□∆,∆′. We have:360

361

⊢ A1 ⇒ C1 | . . . |Am ⇒ C1 |□A1, . . . ,□Am,Γ ⇒ □∆,∆′ ⊢ C1 ⇒ D | . . . |Cn ⇒ D | S
Cut

⊢ A1 ⇒ D | . . . |Am ⇒ C1 | . . . |Cn ⇒ D |□A1, . . . ,□Am,Γ ⇒ □∆,∆′ | S
LW,RW,EC

⊢ A1 ⇒ D | . . . |Am ⇒ C1 | . . . |Cn ⇒ D | S
362

We now apply again a cut on C1 between ⊢ A1 ⇒ D | . . . |Am ⇒ C1 | . . . |Cn ⇒
D | S and ⊢ C1 ⇒ D | . . . |Cn ⇒ D | S which yields (modulo contraction)

⊢ A1 ⇒ D |A2 ⇒ D | . . . |Am ⇒ C1 | . . . |Cn ⇒ D | S

By repeating this procedure (formalizable by induction on m), we get:

⊢ A1 ⇒ D |A2 ⇒ D | . . . |Am ⇒ D | . . . |Cn ⇒ D | S

An application of the rule m gives the desired conclusion.363
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The last system that we analyze is HE. We state the preliminary364

structural properties omitting the proofs which can be obtained along the365

same lines as the previously discussed systems.366

Proposition 3.13. The rule of weakening is admissible. Every rule of the367

calculus is height-preserving invertible. The rule of contraction is height-368

preserving admissible.369

To conclude the section we discuss cut-elimination for the case of HE.370

Instead of lingering on abstract technicalities, we give a concrete example371

of reduction and we leave to the reader the generalization of the argument.372

373

⊢ G | ⇒ A ↔ C | ⇒ B ↔ C |Γ ⇒ ∆
e

⊢ G |□A,□B,Γ ⇒ ∆,□C

⊢ G′ | ⇒ C ↔ D | ⇒ C ↔ E |Π ⇒ Σ
e

⊢ G′ |□C,Π ⇒ Σ,□D,□E
Cut

⊢ G |G′ |□A,□B,Γ,Π ⇒ ∆,Σ,□D,□E

374

We first observe that the rule:375

⊢ G | ⇒ A ↔ B ⊢ G′ | ⇒ B ↔ C
Eq

⊢ G |G′ | ⇒ A ↔ C
376

is admissible via cuts on formulas of lower size. Hence we propose the377

following reduction containing applications of Eq (we omit the contexts378

and the turnstiles and the applications of the rule EC for reasons of space):379

380

⇒ A ↔ C | ⇒ B ↔ C

⇒ A ↔ C | ⇒ B ↔ C ⇒ C ↔ D | ⇒ C ↔ E

⇒ A ↔ D | ⇒ B ↔ C | ⇒ C ↔ E ⇒ C ↔ D | ⇒ C ↔ E

⇒ A ↔ D | ⇒ B ↔ D | ⇒ C ↔ E

⇒ A ↔ D | ⇒ B ↔ D | ⇒ A ↔ E | ⇒ B ↔ C ⇒ A ↔ D | ⇒ B ↔ D | ⇒ C ↔ E

⇒ A ↔ D | ⇒ B ↔ D | ⇒ A ↔ E | ⇒ B ↔ E

381

All the cuts are removed by primary induction hypothesis on the degree of382

the cut formula.383

Theorem 3.14. The cut rule is admissible in HE.384

As a matter of fact, proofs in the hypersequent calculi here proposed385

amount to the decomposition of the endsequent into non further analyz-386

able top-hypersequents. The calculi enjoy invertibility of every rule with387

preservation of the height. In addition, as it will be shown in the next388

section, the decomposition is unique or, which is equivalent, the calculus389

enjoys the stability property.390
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4. Development of fractional semantics391

4.1. Conservativity over the base logic392

Conservativity stems from the soundness and the completeness of the cal-393

culus. Soundness is established with respect to structures which interpret394

modal logics.395

Definition 4.1. An E-neighborhood model is a triple ⟨W, I,V⟩, where W is396

a non-empty set, I : W → P(P(W)) and V : AT → P(W). Truth conditions397

for a formula A in a world x in a model are inductively defined as follows:398

• x ⊩ p if and only if x ∈ V(P ).399

• x ⊩ B ∧ C if and only if x ⊩ B and x ⊩ C.400

• x ⊩ B ∨ C if and only if x ⊩ B or x ⊩ C.401

• x ⊩ ¬B if and only if x ⊮ B.402

• x ⊩ □B if and only if {y | y ⊩ B} ∈ I(x).403

An M-neighborhood model is an E-neighborhood model with the additional404

condition: if a ∈ I(x) and a ⊆ b then b ∈ I(x). A K-neighborhood model405

is an M-neighborhood model in which, if a ∈ I(x) and b ∈ I(x) then we406

get both a ∩ b ∈ I(x) and I(x) ̸= ø, for every x. A D-neighborhood model407

is a K-neighborhood model satisfying the following additional condition:408

a ∈ I(x) ⇒ ac /∈ I(x).409

The definition of validity for a hypersequent in this setting is as follows:410

G is valid if one of its components it valid.411

Proposition 4.2. If HX proves ⊢⇒ A, then A is valid.412

Proof: The proof is by induction on the height of the derivation in the413

corresponding hypersequent calculus. We discuss the case of HE as an414

example. Suppose the hypersequent ⊢ G | [⇒ Ai ↔ Bj ] |Γ ⇒ ∆ is valid,415

hence one of the components is valid. If any component in G or Γ ⇒ ∆ is416

valid, then so is the conclusion, trivially. If for some i, j Ai ↔ Bj is valid,417

then this implies that □Ai ↔ □Bj is valid and therefore the validity of418

the conclusion follows.419

As regards completeness, it suffices to establish that whenever we have420

a derivation of the Hilbert style calculus for a given modal logic, the cor-421

responding sequent is derivable in our calculus too.422
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We recall here the modular presentation of the Hilbert style systems for423

the logics considered here.424

• The system E is axiomatized by adding to a Hilbert-style calculus for425

classical propositional logic the rule:426

⊢ A ↔ B
E⊢ □A ↔ □B

427

• The system M is axiomatized by adding to E the rule:428

⊢ A → B
M⊢ □A → □B

429

• The system K is axiomatized by adding to a Hilbert-style calculus for430

classical propositional logic the axiom □(A → B) → (□A → □B)431

and the rule:432

⊢ A
RN⊢ □A

433

• The system D is axiomatized by adding to K the axiom □A → ♢A.434

Theorem 4.3. If X proves ⊢ A, then HX ⊢⇒ A for X ∈ {K,M,D}.435

Proof: The proof is by induction on the height of the derivation in the436

system X. We give an example of the derivation of the axiom D in HD:437

⊢ A ⇒ A
L¬⊢ A,¬A ⇒

d⊢ □A,□¬A ⇒
R→⊢ □A ⇒ ¬□¬B
R→⊢⇒ □A → ¬□¬A

438

With respect to the rules of the calculus, we show the admissibility of the439

rule M in the calculus HM:440

⊢⇒ A → B
Inv→⊢ A ⇒ B

EW
⊢ A ⇒ B |□A ⇒

m
⊢ □A ⇒ □B

R→⊢⇒ □A → □B

441
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of modus ponens:442

⊢⇒ A
⊢⇒ A → B

Inv→⊢ A ⇒ B
Cut⊢⇒ B

443

and of the E rule in HE:444

⊢⇒ A ↔ B e
⊢ □B ⇒ □A

R→⇒ □B → □A

⊢⇒ B ↔ A e
⊢ □A ⇒ □B

R→⊢⇒ □A → □B
R∧⊢⇒ □A ↔ □B

445

446

As a corollary of the embedding we get the completeness of the resulting447

system. Soundness is obtained as usual through a straightforward induction448

on the height of the derivation of the system and thus we omit the details.449

Corollary 4.4. The systems HX are sound and complete with respect450

to the logics X.451

Proof: If A is valid, then it is derivable in the corresponding axiomatic452

calculus and so in HX.453

4.2. Fractional valued non-normal modal logics454

In order to develop a fractional interpretation of non-normal modal logics,455

we need to show that the assignment of values to formula does not depend456

on the specific shape of the derivations.457

Theorem 4.5 (Stability). If π and ρ are two HX-derivations ending with458

the same hypersequent, then top(π) = top(ρ).459

Proof: The proof is standardly led by induction on the height n of the460

derivation of π. If n = 0, then the claim comes straightforwardly. Other-461

wise we distinguish cases according to the last rule applied. We consider462
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the case in which the last inference is an application of a unary rule, that463

is:464

π′

...
i G′

r
i G

465

We apply the invertibility of the rule r to get a derivation ρ′ of G′. Since466

the height of π′ is strictly lower than that of π, we can apply the induction467

hypothesis to get top(π′) = top(ρ′), which immediately yields the desired468

conclusion.469

Due to the stability property, we can now consider the multiset of top-470

hypersequents associated with a given formula as a derivation-invariant471

notion. That is, the multiset decomposition remains stable through differ-472

ent derivations of the same hypersequent.473

Definition 4.6. Given a formula A, topX(A) is the multiset of the top-474

hyperclauses in any of the HX-derivation ending in (⊢ or ⊣) ⇒ A. The475

multiset topX(A) is partitioned into the two multisets top1X(A) and top0X(A)476

collecting all the hyperclauses signed by ‘⊢’ and the hyperclauses signed477

by ‘⊣ ’, respectively.478

Definition 4.7 (Fractional evaluation function). Let Q∗ = [0, 1] ∩Q, i.e.,
Q∗ is the set of the rational numbers in the closed interval [0, 1]. For each
system X, the evaluation function

q
·

y
X

: F 7→ Q∗ is defined as follows:
for any logical formula A,

q
A

y
X

=
#top1X(A)

#topX(A)

Let us emphasize some basic features about the evaluation function de-479

fined above. First, as already noticed, the Stability property makes the480

fractional evaluation of formulas a derivation-invariant, therefore the frac-481

tional method can be regarded as a semantics to all intents and purposes.482

Second, invertibility of of the rules of the calculus ensures that the rele-483

vant information stored in the conclusion is entirely preserved through the484

decomposition procedure. Third, the assignment is conservative over the485
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base logic, as valid formulas are mapped to the maximum fractional value486

The next theorem establishes the latter point.487

Theorem 4.8 (Conservativity). The formula A is X-valid just in case488 q
A

y
X

= 1.489

Proof: (⇐) If
q
A

y
X

= 1, then there is a HX ending in ⊢⇒ A. By490

applying the soundness theorem we can infer the X-validity of A.491

(⇒) If A is X-valid, then by completeness there is a HX derivation
ending in ⊢⇒ A, so every initial top-hypersequent expresses an identity
and therefore we get

q
A

y
X

=
#top1X(A)

#topX(A)
=

#top1X(A)

#top1X(A)
= 1

492

Let F c be the language of classical propositional logic. The next the-493

orem establishes the surjectivity of the interpretation function
q
·

y
. In494

particular, we have:495

Theorem 4.9. For any q ∈ Q∗: (i) there is a formula A ∈ F c s.t.
q
A

y
X

=496

q, and (ii) there is a formula B ∈ F − F c s.t.
q
B

y
X

= q.497

Proof: Let q = m/n, where m,n ∈ N+ and m ⩽ n. (i) Consider the498

formula
∧
(p∨¬p)m ∧

∧
pn−m. It is immediate to see that

q∧
(p∨¬p)m ∧499 ∧

pn−m
y
X

= m/n = q.500

(ii) We provide details for the modal logic E, other systems can be501

handled analogously. We consider now the modal formula
∧
(□p → □p)m∧502 ∧

(□p)2n−m in F − F c. It turns out, similarly, that
q∧

(□p → □p)m ∧503 ∧
(□p)2n−m

y
X

= 2m/2n = m/n = q.504

Remark 4.10. By combining Theorem 4.9 and the density of Q∗, it is easy505

to verify that for, any modal system X and any pair of modal formulas A,506

B with
q
A

y
X

<
q
B

y
X
, we can always find a third formula C ∈ F c such507

that
q
A

y
X

<
q
C

y
X

<
q
B

y
X
.508

The previous theorem extends the result that has already been estab-509

lished for the modal logic K and serves as a bridge between classical and510

modal propositional logic. Specifically, for any modal formula, it is possi-511

ble to provide a classical formula that has the same identity content as the512
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modal one, as determined by the fractional interpretation. To illustrate513

this qualitative analysis, consider the modal formula □(□p → p) → □p514

such that
q
□(□p → p) → □p

y
M

= 0.5. The decomposition algorithm515

ejects the modal component and returns the classical formula (p ∨ ¬p) ∧ p516

whose fractional interpretation is
q
(p ∨ ¬p) ∧ p

y
M

= 0.5. In fact, the de-517

composition of the formula leads to two initial sequents: a tautological one518

and a complementary one.519

5. Concluding remarks520

We have developed new logical calculi for modal logic D, as well as the non-521

normal modal logics M and E. These systems are able to combine some of522

the most important proof-theoretic features: the subformula property (as a523

consequence of the cut-elimination theorem), finiteness of the proof-search524

space, and invertibility of the logical rules. By fine-tuning a variety of525

bilateralism based on the notion of rejection as underivability, we showed526

how to articulate a proof-based interpretation of the modal logics under527

focus.528

We acknowledge that there are differences between canonical proof-529

theoretic semantics and fractional semantics, to the extent that a semantics530

in terms of proofs does not necessarily qualify as proof-theoretic. In partic-531

ular, the fractional technique results in a multi-valued interpretation of the532

formulas in the language, whereas proof-theoretic semantics is completely533

disengaged from any ”quantitative” form of evaluation. This fact deserves534

special consideration as it suggests that, when decidable systems are under535

consideration, the syntax/semantics dichotomy can be overcome by means536

of a proof-based interpretation, which nonetheless entails a quantitative537

evaluation of the formulas in the language.538

To conclude, we would like to say something about the problem of539

devising a proof-theoretic semantics for the modal operator of necessity.540

According to Kürbis, a proof-theoretic semantics should be seriously re-541

garded as defective without a proper account of the □-modality [7]. The542

technical achievements in this paper show that modal formulas can be max-543

imally analyzed by means of a set of logical rules which have the effect of544

progressively detecting the modal components as residual elements. That545

is, the ”quantity of identity” present in a modal formula can be measured546

in essentially the same way as in classical logic, provided that the classical547
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content has been properly isolated. The lesson to be learned is that, if we548

consider the fractional method as a legitimate variant of proof-theoretic549

semantics, the issue raised by Kürbis can be circumvented inasmuch as550

modal formulas can be evaluated without taking the meaning of the □-551

modality directly into account. In this sense, we believe that our work is552

a step towards a proof-theoretic semantics for modal logics Nonetheless,553

the problem of providing a fully satisfactory proof-theoretic account of the554

□-modality remains an open and challenging task, which requires further555

investigation and research.556
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