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Abstract
Abductive reasoning involves finding the missing premise of an “unsaturated” deduc-
tive inference, thereby selecting a possible explanans for a conclusion based on a set
of previously accepted premises. In this paper, we explore abductive reasoning from a
structural proof-theory perspective. We present a hybrid sequent calculus for classical
propositional logic that uses sequents and antisequents to define a procedure for identi-
fying the set of analytic hypotheses that a rational agent would be expected to select as
explanans when presented with an abductive problem. Specifically, we show that this
set may not include the deductively minimal hypothesis due to the presence of redun-
dant information. We also establish that the set of all analytic hypotheses exhausts all
possible solutions to the given problem. Finally, we propose a deductive criterion for
differentiating between the best explanans candidates and other hypotheses.

Keywords Abduction · Refutation · Analyticity · Proof theory

1 Introduction

Abductive processes are ubiquitous in scientific theorizing and everyday life. They
involve inherent cognitive risk for a rational agent who must select possible
explanantes for an explanandum based on incomplete or uncertain information.
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Although these processes are not deductive in nature, the ultimate goal of a rational
agent in abductive reasoning can be described as the search for the missing premise of
an “unsaturated” deductive inference. Charles Sanders Peirce presents this situation
as an abductive scenario:

I once landed at a seaport in a Turkish province; and, as I was walking up to
the house which I was to visit, I met a man upon horseback, surrounded by four
horsemen holding a canopy over his head. As the governor of the province was
the only personage I could think of who would be so greatly honored, I inferred
that this was he. This was a hypothesis. [23]

The treatment of abduction as an enthymematic deductive argument in reverse is
guided by certain directives. Given a non empty set of premises � and a formula G
such that � � G, we need to find a formula H satisfying three logical conditions:

A1: �, H � G A2: H � G A3: �, H � ⊥
A1 – A3 are part of the tradition of twentieth-century philosophy of science as they can
be traced back toHempel’s essential requirements for H to be considered an explanans
of G given � ([15], pp. 277-78). Of course, the Hempelian account is no longer the
prevailing approach to explanation among most contemporary philosophers of sci-
ence. Over time, the Hempelian model has faced criticism and has been challenged
by alternative accounts of explanation. Many philosophers now advocate for a more
nuanced understanding of explanation that incorporates additional factors beyond sim-
ple deductive subsumption. Some of these alternative accounts include causal models,
pragmatic approaches, and various forms of contextual explanations (for a survey see
[35]). However, the Hempelian approach, with its focus on logical coherence and sys-
tematic analysis, aligns with a structured framework for understanding the problem of
abduction from an abstract deductive perspective. A1 states that the formula G needs
to be ‘deductively reachable’ from the set of premises � ∪ {H}, that is H must bridge
the deductive gap between � and G. A2 and A3 require that the formula H provides
useful and non-trivial information. Specifically, A2 ensures that � is not a superfluous
context by demanding that H alone does not imply G, while A3 requires that adding
H to � should not make � ∪ {H} inconsistent.

To the extent that there exist infinitely many abductive formulas obeying A1 – A3
for any invalid sequent � � G, a natural question immediately arises: what strategy
should be employed by a rational agent to select just one of these formulas? The
following two-step strategy seems to be a reasonable one:

(1) restrict the search space to the (finite) set of abductive hypotheses that convey
information already contained in � and G;

(2) investigate the search space enlarged with abductive hypotheses that satisfy con-
ditions A1 – A3 and provide information not in � or G.

Several efforts have been made to address Step (1), which aims to define an effective
procedure for generating and justifying hypotheses that satisfyA1 –A3. One traditional
approach relies on the use of tableaux. Essentially, it consists in writing the refutation
tree associated with the set �,¬G, examining the open branches, and then identifying
any cluster of formulas�which allow for the systematic closure of eachoneof the open
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branches in the tableau under consideration [3, 7, 18]. The formula H resulting from
themaximal cluster of such formulas satisfies deductive minimality (DM, henceforth):

DM: for any H ′, if �, H ′ � G, then H ′ � H

H is regarded as the optimal hypothesis under the name of least compromising hypoth-
esis.

In this paper, we prove inter alia that the condition of DM is not necessary for the
optimality of H . In effect, DM fails to capture something fundamental to abductive
reasoning: its purpose of finding the simplest andmost relevant explanans from among
many. To illustrate this failure from the perspective of a rational agent, let’s consider
two simple examples.

Example 1.1 Consider the invalid sequent p∨q � q. The resulting least compromising
hypothesis is ¬p ∨ q. However, it seems reasonable to assume that a rational agent
would consider ¬p ∨ q too weak to properly saturate p ∨ q � q. In fact, ¬p seems
to provide a better explanation for p ∨ q � q, as it appeals to an instance of the
disjunctive syllogism p ∨ q,¬p � q.

Example 1.2 Consider the invalid sequent p → q � r → q. Inserting among the
premises the least compromising hypothesis r → (p ∨ q) is a detour for a rational
agent seeking an optimal explanation for p → q � r → q. Instead, r → p fits the
bill by referring to an instance of the hypothetical syllogism r → p, p → q � r → q
(cf. [23], p. 472).

To overcome these difficulties, we design a sequent-based procedure that always
approximates an abductive hypothesis providing a better explanation in our refined
sense. Although our machinery hinges on the well-known duality between tableaux à
la Smullyan and Kleene’s sequent system [25, 32], we believe that explicitly handling
sequents instead of tableaux results in a simpler formal approach, since sequents allow
for a local control of information flow.

Furthermore, our approach can be usefully applied to Step (2), which concerns
the search space expanded with abductive hypotheses that satisfy conditions A1 – A3
while providing additional information. We show how a generalized version of our
procedure can track any abductive hypothesis with new information. Specifically, we
establish that any formula in the expanded search space that satisfies conditions A1
– A3 must also imply one of these hypotheses that satisfy the same conditions. This
result enables us to shift our attention to the (infinite) subspace of abductive hypotheses
that respect conditions A1 to A3 and imply hypotheses that offer a better explanation.
We hypothesize that this subspace includes the set of candidates for selection as the
best explanans.

The paper is is organized as follows. Section 2 introduces the formal machinery that
we use to develop our proposal, namely a hybrid sequent system (with both sequents
and antisequents) that possesses crucial proof-theoretic properties. In Section 3, we
describe a sequent-based procedure for generating the least compromising hypothesis,
and we provide sufficient conditions for enforcing its satisfaction of conditions A2
and A3. Section 4, presents another sequent-based procedure for generating optimal
approximations of the hypotheses, which are analytically obtained from the abductive
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problemand are expected to be selected as optimal by a rational agent.We also spell out
sufficient conditions for ensuring that this procedure satisfies conditions A2 and A3. In
Section 5,wegeneralize the procedure inSection 4 to obtain anypossible strengthening
of the least compromising hypothesis. This generalization lays the groundwork for a
logical treatment of abduction in the presence of new information. Finally, in Section 6
wedrawconclusions about our proposal and sketch somedirections for future research.
At the end of the paper, we include a legend of the terminology we employ, in order
to improve readability.

2 Preliminary Notions and Results

We use capital Greek letters �,�, . . . to denote finite sets of formulas, in particular
�,�, . . . are taken to stand for sets of atomic formulas. For any context � we shall
be adopting the following conventions: If � = {

A1, A2, . . . , An
}
, then

�⊥ ={¬A1,¬A2, . . . ,¬An
} ∧

�= A1∧A2∧· · ·∧An

∨
�= A1∨A2∨· · ·∨An .

For � = ∅, we set �⊥ = �,
∧

� = 	, and
∨

� = ⊥, where 	 and ⊥ stand for an
arbitrarily chosen tautology and contradiction, respectively. For any formula A, sub(A)

denotes the set of its subformulas. In this way, sub(�) = sub(A1) ∪ · · · ∪ sub(An).
In what follows, we shall be dealing with ordinary Gentzen-style sequents � � �

as well as antisequents � 
 �. Antisequents have been introduced in the literature on
refutation calculi to indicate sequents asserting their own invalidity [14, 29]. In other
words, the antisequent � 
 � is valid if, and only if, the sequent � � � is invalid,
namely when there is some Boolean valuation verifying all the formulas in � and
falsifying all those in �. Henceforth we use S,R, . . . as metavariables ranging over
the sets of sequents and antisequents without distinction.

The system G4 is imported from [25, 29] with the slight modification that logical
contexts are considered as sets of formulas instead of ordinary multisets. In particular,

G4 is obtained by adding to Kleene’s G4 rules the complementary axiom � 
 �
ax
,

where � and � are two sets of atomic sentences such that � ∩ � = ∅. In Fig. 1,

the G4 sequent calculus is expressed in a compact way by writing ordinary sequents
� � � as � 1 � and antisequents � 
 � as � 0 �. Whenever we need to generalize
over the union of sequents and antisequents, we shall be writing � ∗ �.

Due to the hybrid nature of the calculus, a G4 derivation δ may end either in a
sequent � � � or in an antisequent � 
 �. In the first case, we say that δ is a proof for

� � �; in the second, δ qualifies as a refutation for � � �. That is, any G4 derivation
of � 
 � counts as a refutation for � � �.

The rules of G4 can be understood as a two-step procedure for decomposing any
(anti)sequent � ∗ � into a set of atomic (anti)sequents, as follows:

(1) (bottom-up) Discount the indices and continue decomposing the (anti)sequent
� ∗ � using the rules in Fig. 1 until each leaf of the resulting tree ends with a
clause;
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Fig. 1 G4 and G4 sequent calculi

(2) (top-down) Decorate each sequent in the resulting tree with the correct index,

starting from the leaves and following the rules of G4.

We can now recall three features of the G4 proof system [4, 25, 28].

Fact 2.1 G4 proves (refutes) � � � if and only if the sequent � � � is classically
valid ( invalid).

Fact 2.2 (Stability). Any two G4 derivations ending with the same (anti)sequent dis-
play the same set of top clauses.

We first observe that Fact 2.2 allows us to directly refer to the set of top-clauses
associatedwith a certain (anti)sequent� ∗ �, being such a decomposition independent
of the specific derivation delivering it. In particular, we write top(� ∗ �) to indicate
the set of top-sequents associated with � ∗ �. The two sets top�(� ∗ �) and
top
(� ∗ �) partition top(� ∗ �) collecting exactly those � i � ∈ top(� ∗ �)

such that i = 1 and i = 0, respectively. The third fact worth mentioning is a byproduct
of the invertibility of G4 logical rules.

Fact 2.3 Let top
(� ∗ �) =
{
�1 
 �1, . . . , �n 
 �n

}
, the two formulas

∧
� →

∨
� and

n∧

i=1
(
∧

�i → ∨
�i ) turn out to be logically equivalent.
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Proof By Fact 2.1, the two formulas
∧

� → ∨
� and

n∧

i=1
(
∧

�i → ∨
�i ) are

logically equivalent if and only if G4 proves the two sequents

∧
� →

∨
� �

n∧

i=1

(
∧

�i →
∨

�i ) (1)

n∧

i=1

(
∧

�i →
∨

�i ) �
∧

� →
∨

� (2)

We consider the two cases separately, reasoning by contradiction.

(i) IfG4 refutes Eq. 1, thenG4 refutes at least one sequent of the form�
n∧

i=1
(
∧

�i →
∨

�i ),
∧

�′
j → ∨

�′
j , with �′

j 
 �′
j ∈ top
(

∧
� → ∨

� ∗), by full

invertibility of G4: by the same token, G4 refutes at least one sequent of the form
�′

j ,�i � �i ,�
′
j . On the other hand, each sequent �′

j � �′
j ,

∧
� → ∨

�

is clearly provable: by full invertibility of G4, this means that G4 proves each
sequent of the form �′

j ,�i � �i ,�
′
j – a contradiction.

(ii) If G4 refutes Eq. 2, then G4 refutes at least one sequent of the form
∧

�1 →∨
�1, . . . ,

∧
�i → ∨

�i , . . . ,
∧

�n → ∨
�n � ∧

�i → ∨
�i by full

invertibility ofG4: this implies thatG4 refutes
∧

�1 → ∨
�1, . . . , p, . . . ,

∧
�n

→ ∨
�n,�i � �i for any p ∈ �i and

∧
�1 → ∨

�1, . . . ,
∧

�n →
∨

�n,�i � �i , q for any q ∈ �i – by the ax rule of G4, a contradiction.

��
Remark 2.1 As a limiting case of the previous fact, the formula

∧
� → ∨

� is
equivalent to 	 just in case top
(� ∗ �) = ∅, i.e., exactly when � � � is a
classically valid sequent.

Example 2.1 This is a G4-derivation ending with the antisequent p → q, p ∨ q 
 r
and so qualifying as a refutation for p → q, p ∨ q � r

p � p, r ax . q, p 
 r ax

p ∨ q 
 p, r ∨L
p 
 q, r ax q 
 r ax

p ∨ q, q 
 r ∨L
p → q, p ∨ q 
 r

→L

In this case we have top(� ∗ �) = {
p � p, r ; q 
 p, r ; p, q 
 r ; q 
 r

}
with

top�(� ∗ �) = {
p � p, r

}
and top
(� ∗ �) = {

q 
 p, r ; p, q 
 r ; q 
 r
}
.

According to what established by Fact 2.3, the two following formulas turn out to be
logically equivalent:

((p → q) ∧ (p ∨ q)) → r (q → (p ∨ r)) ∧ ((p ∧ q) → r) ∧ (q → r)
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3 Producing the Least Compromising Hypothesis

In what follows, by abductive problemwemean any expression of the form�, ?© � G,

with � �= ∅ and such that G4 refutes � � G. Accordingly, by abductive algorithmwe
refer to any effective procedure that, given in input an abductive problem �, ?© � G,

returns an abductive hypothesis H such that �, H � G is provable in G4.
In [7], the tableauxmethod is employed to design an elegant and effective abductive

algorithm for producing what they call the least compromising hypothesis. We begin
this section by proposing a sequent-based reading of the very same procedure. The
switching from tableaux to sequents is here technically justified by the fact that sequent
calculi facilitate the study of the structural properties of the algorithm. Due to the well-
known duality between semantic tableaux à la Smullyan and Kleene’s systemG4 [32],
any result obtained for one system can be nonetheless imported in the other.

Procedure 3.1 (Least CompromisingHypothesis). For any abductive problem�, ?© �
G, the least compromising hypothesis LCH

(
�, ?© � G

)
is the formula resulting from

the following steps:

(1) Decompose the antisequent � 
 G till the set of clauses top
(� 
 G) = {
�1 


�1, . . . , �n 
 �n
}
is fully accomplished.

(2) For each clause �i 
 �i ∈ top
(� 
 G) consider the formula Ci ≡ ∧
�i →∨

�i .
(3) Finally set LCH

(
�, ?© � G

) = C1 ∧ · · · ∧ Cn.

Example 3.1 We apply Procedure 3.1 to compute the formula LCH(p → q, p∨q, ?© �
r):

(1) By looking at the G4-proof reported in Example 2.1, we immediately get

top

(
p → q, p ∨ q, ?© � r

) = {
q 
 p, r ; p, q 
 r ; q 
 r

}

(2) Then we turn each clause into its corresponding formula:
q 
 p, r ⇒ q → (p ∨ r)
p, q 
 r ⇒ (p ∧ q) → r

q 
 r ⇒ q → r

(3) We finally lead up to the compound formula:

LCH(p → q, p ∨ q, ?© � r) = (q → (p ∨ r)) ∧ ((p ∧ q) → r) ∧ (q → r).

It is possible for the decomposition of the antisequent � 
 G to produce a set
of complementary top-clauses �1 
 �1, . . . , �n 
 �n such that there exists one
�i 
 �i which is a classical consequence of � j1 
 � j1 , . . . , � jk 
 � jk , with 1 ≤
i �= j1 �= · · · �= jk ≤ n. For example, consider the LCH-hypothesis of Example 3.1,
and note that q → (p∨r) and (p∧q) → r are both classical consequences of q → r ,
whereas q → r is a classical consequence of q → (p∨r) and (p∧q) → r . In general,
it is reasonable to consider such a �i 
 �i as redundant. Dropping

∧
�i → ∨

�i
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from the set of conjuncts of the LCH-hypothesis yields a logically equivalent formula,
which is an optimized version of the former.

In [7], the authors demonstrate that one can generate an optimized version of the
LCH-hypothesis by replacing Smullyan-style tableaux with KE-tableaux [6, 8], which
are a dual presentation of a sequent calculus that does not enjoy admissibility of Cut
[12]. In our sequent-based approach via G4, redundant clauses can be eliminated by
utilizing the following rewriting rules:

{� 
 �} ∪ {�′, � 
 �, �′} →w {� 
 �} (3)
n⋃

i=1
{�i 
 �i } ∪ {�′′, �′

1, . . . , � j , . . . , �
′
n 
 �′

1, . . . , �k , . . . , �
′
n, �

′′} →c

n⋃

i=1

{�i 
 �i }

(4)

with �′ ∪ �′ �= ∅, n ≥ 2 and 1 ≤ j �= k ≤ n, provided that for any 1 ≤ j ′ �=
j, k′ �= k, j ′ �= k′ ≤ n and some �,� we have that �′

j ′ = (� ∪ � j ′) \ {p} and
�′

k′ = (�k′ ∪ �) \ {p} for any p ∈ (�k′ ∪ �) ∩ (� ∪ � j ′).

The rationale for adopting these rewriting rules is that of avoiding cases inwhichG4
derives at least one clause inS fromother clauses inS either by applying (an invalidity-
preserving version of)Weakening – as with the derivation of�′,� 
 �,�′ from� 

� –, or by applying in some order (invalidity-preserving versions of) Weakening and
Cut – as with the derivation of �′′,�′

1, . . . , � j , . . . , �
′
n 
 �′

1, . . . , �k, . . . , �
′
n,�

′′

from
n⋃

i=1
{�i 
 �i }.

For any set S of clauses, maximal application of the rewriting rules Eqs. 3 – 4 to S
yields a (not necessarily unique) subset T of clauses where all redundant clauses from
S have been dropped modulo logical equivalence: we refer to T as a reduct under
Weakening and Cut of S after [24].

We can thus refine step (1) of Procedure 3.1 by taking a reduct under Weakening
and Cut of the set of top-clauses which results from the decomposition of the abductive
problem. If we consider once more Example 3.1, this refinement forces us to consider
two possible optimizations of the LCH-hypothesis (q → (p ∨ r)) ∧ ((p ∧ q) →
r) ∧ (q → r): in one case, we first apply rule Eq. 3, thus dropping q 
 p, r and
p, q 
 r from top
(p → q, p ∨ q, ?© � r) and getting q → r as optimized LCH-
hypothesis; in the other case, we first apply rule Eq. 4, thus dropping q 
 r from
top
(p → q, p∨q, ?© � r) and getting (q → (p∨ r))∧ ((p∧q) → r) as a distinct
(but logically equivalent) optimized version of the LCH-hypothesis.

We can now turn to the proof of the first basic result about the LCH-hypothesis:

Theorem 3.1 For any (abductive) problem �, ?© � G, G4 proves both LCH(� 
 G) �∧
� → G and

∧
� → G � LCH(� 
 G).

Proof Let top�(� 
 G) = {
�1 � �1, . . . , �m � �m

}
and top
(� 
 G) =

{
�m+1 
 �m+1, . . . , �m+n 
 �m+n

}
. It is a routine matter to verify that G4 proves
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each of the following sequents:

(∧
�1 →

∨
�1

) ∧ · · · ∧ ( ∧
�m+n →

∨
�m+n

) �
∧

� → G (5)

∧
� → G � ( ∧

�1 →
∨

�1
) ∧ · · · ∧ (∧

�m+n →
∨

�m+n
)

(6)

� ( ∧
�1 →

∨
�1

) ∧ · · · ∧ ( ∧
�m →

∨
�m

)
(7)

The provability of sequents Eqs. 5 and 6 is an immediate consequence of Fact 2.3,
whereas the provability of Eq. 7 straightforwardly follows from the fact that each
clause �i � �i , with 1 ≤ i ≤ m, is tautological. By ∧-invertibility of G4, provability
of sequents Eqs. 5 – 7 implies that the following sequents are provable:

( ∧
�1 →

∨
�1

)
, . . . ,

( ∧
�m+n →

∨
�m+n

) �
∧

� → G (8)

∧
� → G �

∧
� j →

∨
� j (9)

�
∧

�1 →
∨

�1, . . . ,
∧

�m →
∨

�m (10)

with 1 ≤ j ≤ m+n. By closure of G4 under Cut, provability of Eqs. 8 and 10 implies
that the following sequent is provable:

( ∧
�m+1 →

∨
�m+1

)
, . . . ,

( ∧
�m+n →

∨
�m+n

) �
∧

� → G (11)

Provability of Eqs. 9 and 11, together with the fact that

LCH(� 
 G) = ( ∧
�m+1 →

∨
�m+1

) ∧ · · · ∧ ( ∧
�m+n →

∨
�m+n

)

yields the conclusion. ��
We can now show that the LCH-hypothesis enjoys condition A1 (cf. Lemma 3.1 and

Theorem 3.1 in [7]):

Corollary 3.1 For any problem �, ?© � G, the sequent �, LCH(� 
 G) � G is always

provable in G4.

Proof The claim is an immediate consequence of Theorem 3.1 and full invertibility
of G4. ��

The previous result can be strengthened by showing that the LCH-abductive hypoth-
esis turns out to be deductively minimal (modulo logical equivalence) with respect to
the whole set of formulas obeying the condition A1. It should now be clear why in the
literature the resulting abductive hypothesis is classified as the “least compromising”
one:

Theorem 3.2 For any problem �, ?© � G, if G4 proves �, A � G, then it also proves
A � LCH(� 
 G).
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Proof If G4 proves �, A � G, then it proves A � ∧
� → G as well: by Theorem 3.1

and closure of G4 under Cut we get the desired conclusion. ��
Minimality guarantees that if LCH(� 
 G) does not satisfy A2 and A3, then no

abductive hypothesis A can satisfy A2 and A3 at the same time. Since we are inter-
ested in abductive hypotheses that comply with the complete set of desiderata A1,
A2, and A3, a natural question arises as to whether LCH(� 
 G) always satisfies
them simultaneously. Unfortunately, the answer is negative. For example, consider
the problem ¬p ∨ ¬q, ?© � p ∧ q. According to Procedure 3.1, we have that
LCH(¬p∨¬q, ?© � p∧ q) = p∧ q ∧ (p∨ q). The sequents p∧ q ∧ (p∨ q) � p∧ q

and ¬p ∨ ¬q, p ∧ q ∧ (p ∨ q) � are both provable in G4.
Upon closer examination, we can observe that the formula LCH(� 
 G) satisfies

conditions A2 and A3 in a limited number of cases characterized by the following
result:

Theorem 3.3 Foranyproblem�, ?© � G,G4 refutes LCH(� 
 G) � G and�, LCH(� 

G) � just in case G4 refutes ¬G � ∧

� and � � ¬G, respectively.

Proof By Theorem 3.1 and G4 being closed under Cut, LCH(� 
 G) does not satisfy

conditionA2 if and only ifG4 proves
∧

� → G � G, and LCH(� 
 G) does not satisfy

A3 if and only if G4 proves �,
∧

� → G �. We consider the two cases separately.

(i) If G4 proves
∧

� → G � G, then G4 proves� G,
∧

� by→-invertibility of G4,

and then ¬G � ∧
� by one application of ¬L. On the other hand, if G4 proves

¬G � ∧
� then G4 proves � G,

∧
� by ¬-invertibility of G4, and then derives∧

� → G � G from G � G by one application of →L.
(i i) IfG4 proves�,

∧
� → G �, thenG4 proves�,G � by→-invertibility ofG4, and

then � � ¬G by one application of¬R. On the other hand, if G4 proves � � ¬G

then G4 proves �,G � by ¬-invertibility of G4, and then derives �,
∧

� → G �
from � � ∧

� by one application of →L.

By contraposition and using Fact 2.1, we then obtain the desired conclusion.
��

Fromnowon,wewill call explanans any abductive hypothesis respecting conditions

A2 and A3. Bearing in mind that B is deductively independent of A when G4 refutes
both the sequents A � B and A, B �, we collect the following facts about any LCH-
explanans:

Proposition 3.1 For any problem �, ?© � G, if LCH(� 
 G) is an explanans, then:

(i)
∧

�, G and LCH(� 
 G) are all truth-functionally contingent;
(i i) LCH(� 
 G) and

∧
� turn out to be deductively independent of each other;

(i i i) G is deductively independent of LCH(� 
 G), but not vice versa.
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Proof We prove each statement separately.

(i) If �, ?© � G is an abductive problem, then
∧

� is not contradictory and G not
tautological. On the other hand, if LCH(� 
 G) respects conditions A2 and A3
then LCH(� 
 G) is not contradictory, and by Theorem 3.3 neither

∧
� nor ¬G

can be tautological.

(i i) LCH(� 
 G) is deductively independent of
∧

�: by contradiction, if G4 proved∧
� � LCH(� 
 G), then it would prove

∧
� � G by Corollary 3.1 and closure

of G4 under Cut; on the other hand, if G4 proved
∧

� � ¬LCH(� 
 G), ¬-

invertibility of G4 would guarantee that
∧

�, LCH(� 
 G) is provable – against
condition A3. The fact that

∧
� is deductively independent of LCH(� 
 G) can

be proved by an analogous argument.

(i i i) G is deductively independent of LCH(� 
 G): if G4 proved LCH(� 
 G),G �,
then it would prove �, LCH(� 
 G) � by Corollary 3.1 and closure of G4 under

Cut – against condition A3; if G4 proved LCH(� 
 G) � G, then condition

A2 would be violated. On the other hand, it suffices to notice that G4 proves
G � ∧

� → G to conclude, by Theorem 3.1 and closure of G4 under Cut, that
LCH(� 
 G) is not deductively independent of G. ��

As a result, (i) and (i i) of Proposition 3.1 jointly state that a rational agent uses an
LCH-explanans only if she uses LCH to lower the number of (contingent) facts indepen-
dent of a (contingent) theoretical background: according to the terminology of [1], a
rational agent uses LCH as an explanans only if she uses it to reduce the number of
novelties w.r.t. the theoretical background. On the other hand, point (i i i) of Propo-
sition 3.1 shows that the minimal explanans LCH enjoys maximal evidential support,
meaning that if the explanandum is true, then the LCH-explanans cannot fail to be true
(cf. [10], p. 45).

We conclude this section by noticing that the LCH-abductive hypothesis is context-
sensitive, that is to say the addition of premises in the theoretical background may
alter the deductive strength of the LCH-abductive hypothesis:

Proposition 3.2 For any two distinct problems �, ?© � G and �′, �, ?© � G,

(i) G4 proves LCH(� 
 G) � LCH(�′, � 
 G);

(i i) G4 refutes LCH(�′, � 
 G) � LCH(� 
 G) if and only if G4 refutes �,¬A � G
for at least one formula A ∈ �′.

Proof For Eq. 1 it suffices to consider that G4 proves
∧

� → G � (∧
�′ ∧∧

�) →
G and exploit Theorem 3.1. As to Eq. 2, we consider the two directions separately.

(i) If G4 proves LCH(�′, � 
 G) � LCH(� 
 G), then it proves (
∧

�′ ∧ ∧
�) →

G � ∧
� → G by Theorem 3.1 and closure of G4 under Cut. As a result, G4

proves
∧

� � G, A for any A ∈ �′ by full invertibility of G4: by one application
of ¬L we get the result.

(i i) If G4 proves
∧

�,¬A � G for any A ∈ �′, then it proves
∧

� � G, A by
¬-invertibility of G4 and thus (

∧
�′ ∧ ∧

�) → G � ∧
� → G by applications

123



M. Piazza et al.

of ∧R,→L and →R: as a result, G4 proves LCH(�′, � 
 G) � LCH(� 
 G) by
Theorem 3.1 and closure of G4 under Cut.

By contraposition, we exploit Fact 2.1 to get the conclusion. ��

4 Deductive Minimality and Expected Explanation

It is easy to find problems in which a rational agent’s preferred abductive hypothesis
does not match the minimum deductive hypothesis. Some of these problems are illus-
trated in Fig. 2, in addition to those presented in the Introduction. In all these cases,
the expected hypothesis satisfies conditions A1 – A3 and is obtained by dropping some
atomic pieces of information from the least compromising hypothesis.

For the sake of optimality, it is plausible to assume that deleted atoms correspond
to redundant information – information in the abductive problem that the rational
agent treats as irrelevant against deductive saturation. Specifically, the rational agent
seems to implicitly treat as irrelevant some atomic pieces of information, whether
in the theoretical background or in the goal formula, that perform partial deductive
saturation even before making an abductive inference. The results presented in this
section explore this intuition.

Let us begin with some terminology. For any (anti)sequent� ∗ �, if top(� ∗ �) ={
�1

∗ �1, . . . , �n
∗ �n

}
then we have that

Fig. 2 Examples of minimal and expected solutions
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(a) AT(� ∗ �) =
n⋃

i=1
(�i ∪ �i );

(b) ID(� ∗ �) =
n⋃

i=1
(�i ∩ �i );

(c) CUT(� ∗ �) =
n⋃

i=1

n⋃

j=1
(�i ∩ � j );

(d) AT(A) = AT( ∗ A) = AT(A ∗).

Example 4.1 Take the G4 derivation of p → q, p ∨ q 
 r in Example 2.1. We have
that

(i) AT(p → q, p ∨ q 
 r) = {p, q, r};
(i i) ID(p → q, p ∨ q 
 r) = {p};

(i i i) CUT(p → q, p ∨ q 
 r) = {p}.
For any problem �, ?© � G, we say that an atom p ∈ AT(� 
 G) is abductively

redundant if p ∈ ID(� 
 G). In other words, an atom is abductively redundant
when ‘trivializes’ a clause in the decomposition of the abductive problem. Intuitively,
atomic sentences of this kind correspond to pieces of information which are trivially
contained in the theoretical background, or trivially contained in the goal formula, or
shared between theoretical background and goal formula.

If we revise LCH(� 
 G) by erasing atoms in S ⊆ ID(� 
 G), we can partially
eliminate redundant information. According to the following proposition, a rational
agent who eliminates all abductive redundant information also drops all the informa-
tion contained in intermediate steps possibly used to “saturate” the abductive problem
via the deductively minimal explanans:

Proposition 4.1 For any problem �, ?© � G such that LCH(� 
 G) is an explanans, if
p ∈ ID(� 
 G), then p ∈ CUT(

∧
� → G 
).

Proof Notice that top(� 
 G) = top(
 ∧
� → G) due to →-invertibility in

G4. Moreover, if LCH(� 
 G) is an explanans, then G4 refutes
∧

� → G � by
using Proposition 3.1, Fact 2.1, and Theorem 3.1. Based on this, we can prove a
statement stronger than the one above. Namely, for any formula A, p ∈ ID(
 A) only
if p ∈ CUT(A 
).

To prove this, we must perform an intermediate step. For any � ∗ � ∈ top(
 A),
suppose � = p1, . . . , pm and � = pm+1, . . . , pm+n with m, n ≥ 0 and m + n > 0.
For any clause � ∗ � ∈ top(A 
), there is precisely one ph ∈ (� ∪ �) such that
ph ∈ � if 1 ≤ h ≤ m and ph ∈ � if m + 1 ≤ h ≤ m + n. Furthermore, for any
two distinct � ∗ � and �′ ∗ � ′ ∈ top(A 
), there are at least two atoms ph and ph′
such that ph ∈ (� ∪ �), ph′ ∈ (�′ ∪ � ′), ph′ ∈ � ′ if 1 ≤ h′ ≤ m and ph′ ∈ �′ if
m + 1 ≤ h′ ≤ m + n, and ph �= ph′ .

We reason by (course-of-value) induction over the number k ≥ 0 of connectives in
A. If k = 0, the result is trivial. If k = j + 1 with j ≥ 0, then it suffices to consider
two cases.

(i) A is of the form¬B: since top(¬B 
) = top(
 B) and top(
 ¬B) = top(B 
)

by ¬-invertibility of G4, it suffices to apply the inductive hypothesis for k < j .
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(i i) A is of the form B∧C : since top(B∧C 
) = top(B,C 
) and top(
 B∧C) =
top(
 B) ∪ top(
 C) by ∧-invertibility of G4, it suffices to apply twice the
inductive hypothesis – with j being j1 + j2, j1 being the number of connectives
in B and j2 the number of connectives in C .

It can now be proved that p ∈ ID(
 A) only if p ∈ CUT(A 
) (we omit the details).
Notice that CUT(LCH(� 
 G) 
) ⊆ CUT(

∧
� → G 
) by Theorem 3.1. ��

For any problem �, ?© � G, the elimination of redundant information generates
formulas according to the following procedure:

Procedure 4.1 (Approximation to an expected hypothesis). For any problem �, ?© �
G and any subset S of ID(� 
 G), the S-approximation to an expected hypothesis
EHS

(
�, ?© � G

)
is the formula obtained according to the following steps:

(1) Decompose the antisequent � 
 G till the set of clauses top
(� 
 G) = {
�1 


�1, . . . , �n 
 �n
}
is fully accomplished.

(2) For each clause �i 
 �i ∈ top
(� 
 G) take the largest clause �′
i 
 �′

i such
that �′

i ⊆ �i ,�
′
i ⊆ �i and �′

i ∩ S = �′
i ∩ S = ∅.

(3) For each clause �′
i 
 �′

i thus obtained consider the formula Ci ≡ ∧
�′

i →∨
�′

i .
(4) Finally set EHS

(
�, ?© � G

) = C1 ∧ · · · ∧ Cn (avoiding repetition of conjuncts).

Notice that, for any problem �, ?© � G, if |ID(� 
 G)| = k, then there are (at most)
2k EHS-hypotheses.

Remark that an EHS(� 
 G)-hypothesis is just the LCH(� 
 G)-hypothesis when-
ever either S = ∅ or AT(LCH(� 
 G)) ∩ S = ∅.

Example 4.2 WeapplyProcedure4.1 to compute the formula EHS
(
(p∧q)∨(r∧s), ?© �

p ∧ r
)
, for any S ⊆ ID

(
(p ∧ q) ∨ (r ∧ s), ?© � p ∧ r

)
:

(1) By performing decomposition we get

top

(
(p ∧ q) ∨ (r ∧ s), ?© � p ∧ r

) = {
r , s 
 p ; p, q 
 r

}

and
ID

(
(p ∧ q) ∨ (r ∧ s), ?© � p ∧ r

) = {p, r}
(2) For any S ⊆ {p, r} delete all occurrences of atoms in S from clauses r , s 
 p and

p, q 
 r , and take the formula translations of the resulting clauses.
(3) Finally, we obtain the following set of EHS-abductive hypotheses:

((r ∧ s) → p) ∧ ((p ∧ q) → r)

(¬r ∨ ¬s) ∧ (q → r)

(s → p) ∧ (¬p ∨ ¬q)

¬s ∧ ¬q
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Fig. 3 Poset of EHS -abductive
hypotheses for
(p∧q)∨ (r ∧ s) 
 p∧r¬s∧¬q

We can refine Procedure 4.1 by taking a reduct under Weakening and Cut of the set
of clauses resulting from step (3).

Let us define a partial order ≤ over the set of EHS-hypotheses such that, for any
S, T ⊆ ID(� 
 G), EHS(� 
 G) ≤ EHT (� 
 G) if and only if S ⊆ T (see Fig. 3). It
is easy to prove that ≤ is monotonic w.r.t. deductive strength:

Theorem 4.1 For any problem �, ?© � G and any S, T ⊆ ID(� 
 G), if EHS(� 

G) ≤ EHT (� 
 G) then G4 proves EHT (� 
 G) � EHS(� 
 G).

Proof By construction, EHT (� 
 G) is of the following form

(∧
�1 →

∨
�1

) ∧ · · · ∧ ( ∧
�n →

∨
�n

)
(12)

On the other hand, EHS(� 
 G) has by construction the following form

((∧
�1∧

∧
�′

1

)→(∨
�1∨

∨
�′

1

)∧· · ·∧(∧
�n∧

∧
�′

n

)→(∨
�n∨

∨
�′

n

))

(13)

with �′
i ,�

′
i ⊆ (

T \ S
)
for any 1 ≤ i ≤ n. By full invertibility in G4 we have that G4

proves

( ∧
�i →

∨
�i

) � (∧
�i ∧

∧
�′

i

) → ( ∨
�i ∨

∨
�′

i

)
(14)

for any 1 ≤ i ≤ n. Provability of Eq. 14, together with the fact that EHT (� 
 G) and
EHS(� 
 G) have the form displayed by Eqs. 12 and 13, respectively, implies that

G4 proves EHT (� 
 G) � EHS(� 
 G) by n(n − 1) applications of Left Weakening,
n(n − 1) applications of ∧L and n − 1 applications of ∧R. ��
Corollary 4.1 For any problem �, ?© � G and any S ⊆ ID(� 
 G), G4 proves
EHS(� 
 G) � LCH(� 
 G).

We can now show that any formula obtained according to Procedure 4.1 satisfies
condition A1, and is thus an abductive hypothesis:

Corollary 4.2 For any problem �, ?© � G and any S ⊆ ID(� 
 G), EHS(� 
 G)

satisfies condition A1.

Proof Since LCH(� 
 G) is always such that �, LCH(� 
 G) � G by Corollary 3.1, it
suffices to exploit Corollary 4.1 and closure under Cut of G4 to get the result. ��
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If the elimination of redundant information from top
(LCH(� 
 G)) = {
�1 


�1, . . . , �n 
 �n
}
is non-vacuous, then an EHS-abductive hypothesis may not be

logically equivalent to the deductively minimal hypothesis:

Proposition 4.2 For any problem �, ?© � G and any S ⊆ ID(� 
 G), if LCH(� 
 G)

is an explanans then G4 refutes LCH(� 
 G) � EHS(� 
 G) if and only if one of the
following holds:

(i) EHS(� 
 G) is contradictory;
(i i) if�i 
 �i ,� j 
 � j and�k 
 �k ∈ top
(
 LCH(� 
 G)), with1 ≤ i, j, k ≤ n,

then

(a) for any i such that either �′
i = �i \ S or �′

i = �i \ S is non empty, and any
j �= i , either there is one non empty �′

j ⊆ � j such that �′
j ∩ �′

i = ∅, or
there is one non empty �′

j ⊆ � j such that �′
j ∩ �′

i = ∅;
(b) for any j there is (at least) an atom p such that either p ∈ �′

j and p /∈ �′
k ,

or p ∈ �′
j and p /∈ �′

k – for any k �= j .

Proof Notice that LCH(� 
 G) being an explanans implies that G4 refutes LCH(� 

G) �, by Proposition 3.1 and Fact 2.1. We separately prove the two directions of the
biconditional.

(i) If G4 refutes LCH(� 
 G) � EHS(� 
 G), then there must be (at least) one
�i 
 �i ∈ top
(
 LCH(� 
 G)) such that (�i ∪ �i ) ∩ S �= ∅. Suppose by
contradiction that EHS(� 
 G) is not contradictory and one of the following two
holds:

(a) there is (at least) one distinct � j 
 � j ∈ top
(
 LCH(� 
 G)) such that, if
�′

i �= ∅, then for any non empty �′
j ⊆ � j we have that �′

j ∩ �′
i �= ∅, and,

if �′
i �= ∅, then for any non empty �′

j ⊆ � j we have that �′
j ∩ �′

i ;
(b) there is (at least) one � j 
 � j ∈ top
(
 LCH(� 
 G)) such that, for any

atom p, if p ∈ �′
j , then p ∈ �′

k for (at least) one k �= j – and, if p ∈ �′
j ,

then p ∈ �′
k for (at least) one k �= j .

Any � ∗ � ∈ top(LCH(� 
 G) 
) results from the selection of one (not
necessarily distinct) atom for any � ∗ � ∈ top(
 LCH(� 
 G)) taking care of
placing on the left (resp. right) side of the sequent symbol the atoms selected
on the right (resp. left) (cf. the proof of Proposition 4.1). As a consequence, if
(a) is the case then for any � ∗ � ∈ top(LCH(� 
 G) 
) we have that either
� ∩ �′

i �= ∅ or � ∩ �′
i �= ∅ and thus that LCH(� 
 G) � (

∧
�′

i → ∨
�′

i )

is provable – a contradiction. On the other hand, if (b) is the case then for any
� ∗ � ∈ top(LCH(� 
 G) 
) such that � ∩ �′

i = ∅ and � ∩ �′
i = ∅ we have

that G4 proves � � � – again, a contradiction.

(i i) If EHS(� 
 G) is contradictory, then G4 proves LCH(� 
 G) � EHS(� 
 G) only
if the sequent LCH(� 
 G) � is provable – a contradiction. On the other hand,
suppose that there is (at least) one �i 
 �i ∈ top
(
 LCH(� 
 G)) such that
(�i ∪�i )∩ S �= ∅ and, for any distinct � j 
 � j ∈ top
(
 LCH(� 
 G)), there
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is either a non empty �′
j ⊆ � j such that �′

j ∩�′
i = ∅ or a non empty �′

j ⊆ � j

such that �′
j ∩ �′

i = ∅, with �′
i = (�i \ S) and �′

i = (�i \ S). This means that
there is (at least) one � ∗ � ∈ top(LCH(� 
 G) 
) such that � ∩ �′

i = ∅ and
� ∩ �′

i = ∅. If for any j there is (at least) an atom p such that either p ∈ �′
j

and p /∈ �′
k for any k �= j , or p ∈ �′

j and p /∈ �′
k for any k �= j , then one can

always pick a � ∗ � ∈ top(LCH(� 
 G) 
) such that � ∩ � = ∅: as a result,

G4 refutes LCH(� 
 G) � (
∧

�′
i → ∨

�′
i ) – as desired. ��

Given the set F of all formulas, for any set S of atomic sentences we use F � S to
denote the largest set of formulas in which no atom from S occurs – more formally,
F � S = {A ∈ F | AT(A) ∩ S = ∅}. We can show that any non-contradictory
EHS-hypothesis is deductively minimal w.r.t. abductive hypotheses in F � S:

Proposition 4.3 For any problem �, ?© � G and any S ⊆ ID(� 
 G), if A is any
abductive hypothesis such that A ∈ F � S and EHS(� 
 G) is not contradictory, then

G4 proves A � EHS(� 
 G).

Proof Since G4 proves �, A � G, if top
(� 
 G) = {
�1 
 �1, . . . , �m 
 �m

}

then each sequent �i , A � �i , with 1 ≤ i ≤ m, is provable. On the other hand, if
top(A 
) = {

�′
1

∗ �′
1, . . . , �

′
n

∗ �′
n

}
, then each sequent �′

j ,�i � �i ,�
′
j , with

1 ≤ j ≤ n, is provable. If EHS(� 
 G) = ( ∧
�1 → ∨

�1
) ∧ · · · ∧ ( ∧

�m →
∨

�m
)
, with �i = (

�i \ S
)
and �i = (

�i \ S
)
, we can prove that G4 proves

�i ,�
′
j � �′

j , �i : we just reason by cases over �′
j

∗ �′
j .

(i) If G4 proves �′
j � �′

j , then it proves �i ,�
′
j � �′

j , �i since G4 is closed under
Weakening.

(i i) If G4 refutes �′
j � �′

j , then �′
j ∩ �′

j = ∅: since �′
j ,�i � �i ,�

′
j is provable,

we have that either �′
j ∩ �i �= ∅ or �i ∩ �′

j �= ∅. The fact that A ∈ F � S
implies that �′

j ∩ S = �′
j ∩ S = ∅: since EHS(� 
 G) is non-contradictory it is

sufficient to guarantee that either �i �= ∅ or �i �= ∅, then we have that either
(�′

j ∩ �i ) ⊆ �i or
(
�i ∩ �′

j

) ⊆ �i . This implies that either �i ∩ �′
j �= ∅ or

�i ∩ �′
j �= ∅ – which is enough to conclude that G4 proves �i ,�

′
j � �′

j , �i .

IfG4 proves�i ,�
′
j � �′

j , �i , with 1 ≤ i ≤ m and 1 ≤ j ≤ n, then it also proves each
sequent�i ,

∧
�′

j � ∨
�′

j , �i , and, bym applications of→R andm−1 applications
of ∧R, each sequent �′

j � �′
j , EHS(� 
 G). As an immediate consequence, we have

that G4 proves A � EHS(� 
 G). ��
The following example illustrates that even when we restrict ourselves to abductive

problems where the LCH-hypothesis serves as an explanans, there is no guarantee that
the EHS-hypothesis is also an explanans, for some set of atoms S �= ∅.

Example 4.3 Consider the problem (p ∧ ¬q) → r , q → ¬r , ?© � r: if S = {q, r},
Procedure 4.1 yields 	 → ⊥ as an optimized version of EHS((p ∧ ¬q) → r , q →
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¬r , ?© � r) - and the sequents	 → ⊥ � r and (p∧¬q) → r , q → ¬r , (	 → ⊥) �
are clearly provable in G4.

Once more, closer examination shows that the EHS-hypothesis satisfies conditions
A2 and A3 in a restricted number of cases, which is characterized by the following
result:

Theorem 4.2 For any problem �, ?© � G and any S ⊆ ID(� 
 G), EHS(� 
 G) is an
explanans just in case

(i) there is at least one � 
 � ∈ top
(EHS(� 
 G) 
) such that, for any �′ ⊆ �,
�′ ⊆ �, �′ 
 �′ /∈ top
(G 
);

(i i) there is at least one � 
 � ∈ top
(EHS(� 
 G) 
) such that, for any �′ ⊆ �,
�′ ⊆ �, �′ 
 �′ /∈ top
(
 ∧

�).

Proof Note that if EHS(� 
 G) serves as an explanans, it cannot be contradictory.
According to Facts 2.1 and 2.3, this means that top
(EHS(� 
 G) 
) �= ∅. Fur-

thermore, observe that if G4 proves either G � or � ∧
�, then by Corollary 4.2 and

closure of G4 under Cut, it also proves either �, EHS(� 
 G) or EHS(� 
 G) � G.
Thus, if EHS(� 
 G) is an explanans, then top
(G 
) and top
(
 ∧

�) are both
non-empty.
We can focus on case (i), since case (i i) is analogous.

(i) Let us assume by contradiction that EHS(� 
 G) is an explanans and, for any
� 
 � ∈ top
(EHS(� 
 G) 
), there exist �′ ⊆ � and �′ ⊆ � such that

�′ 
 �′ ∈ top
(G 
). Since G4 refutes � � G and thus top
(G 
) �= 
 , we
have

(
�′ ∪ �′) �= ∅. It is easy to show that for any �′ 
 �′ ∈ top
(G 
) and

any�′′ 
 �′′ ∈ top
(
 G), either�′ ∩�′′ �= ∅ or�′ ∩�′′ �= ∅ (cf. the proof of

Proposition 4.1). As a result, G4 proves EHS(� 
 G) � G, and thus EHS(� 
 G)

does not satisfy condition A2 – a contradiction.
Now, let us assume by contradiction that there exists at least one � 
 � ∈
top
(EHS(� 
 G) 
) such that, for any �′ ⊆ �, �′ ⊆ �, �′ 
 �′ /∈ top
(G 
),
and EHS(� 
 G) does not satisfy condition A2. Since top
(EHS(� 
 G) 
) �= ∅,

we must conclude that G4 proves � G – another contradiction.
��

Corollary 4.3 For any problem �, ?© � G and any non-empty S ⊆ ID(� 
 G), if
LCH(� 
 G) is an explanans, then EHS(� 
 G) is an explanans just in case

(i) there is at least one � 
 � ∈ top
(LCH(� 
 G) 
) such that, for any �′ ⊆ �,
�′ ⊆ �, �′ 
 �′ /∈ top
(G 
) and (� ∪ �) � S;

(i i) there is least one � 
 � ∈ top
(LCH(� 
 G) 
) such that, for any �′ ⊆ �,
�′ ⊆ �, �′ 
 �′ /∈ top
(
 ∧

�) and (� ∪ �) � S.

Theorem 4.2 and Corollary 4.3 provide some important insights into the nature of
EHS(� 
 G) as an explanans. Specifically, they state that EHS(� 
 G) is an explanans
if the LCH(� 
 G)-hypothesis respects conditions A2 and A3, regardless of whether
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or not there are abductively redundant atoms present. This is important because it
shows that the number of (contingent) novelties against the (contingent) theoretical
background can be reduced without necessarily depending on abductively redundant
atoms. Furthermore, any EHS-explanans can be used to reduce the number of novelties
in a way that approximates the abductively optimal one. Additionally, we can estab-
lish that EHS(� 
 G) and

∧
� are deductively independent of each other, and G is

deductively independent of EHS(� 
 G) (cf. Proposition 3.1).
The cases where an EHS-hypothesis fails to be maximally supported by evidence

can be characterized as follows:

Proposition 4.4 For any problem �, ?© � G and any S ⊆ ID(top(� 
 G)), if LCH(� 

G) is an explanans thenG4 refutes G � EHS(� 
 G) if and only if AT(� 
 �)∩S �= ∅

for some � 
 � ∈ top
(
 G).

Proof Analogous to the proof of Proposition 4.2. ��
We are now ready to give a formal rendition of the intuitive notion of ‘expected

hypothesis’ we started this section with:

Procedure 4.2 (Expected hypothesis). For any problem �, ?© � G such that LCH(� 

G) is an explanans, and for any subset S of ID(� 
 G), the set of expected hypotheses
EH

(
�, ?© � G

)
is obtained according to the following steps:

(1) Decompose the antisequent � 
 G till (a reduct under Weakening and Cut of) the
set of clauses top
(� 
 G) is fully accomplished.

(2) For each S apply steps (2) – (4) of Procedure 4.1 so as to get the set E of all
(optimized) EHS-hypotheses.

(3) Take the greatest E ′ ⊆ E such that E ′ does not include any formula A for which
each clause of top
(A 
) is both a weakened version of a clause in top
(G 
)

and a weakened version of a clause in top
(
 ∧
�) (cf. Theorem 4.2).

(4) Finally, take the least E ′′ ⊆ E ′ which contains the maximal elements of E ′ w.r.t.
≤.

We give some examples of how Procedure 4.2 works.

Example 4.4 For any problem in Fig. 2 it is easy to verify that the set of EH-hypotheses
produced according to Procedure 4.2 contains only the hypothesis reported in the
rightmost column. Take e.g. the abductive problem p → q, r → s, ?© � q ∨ s:

(1) the only reduct under Weakening and Cut of top
(� 
 G) is { 
 q, s, r , p }, and
thus LCH(� 
 G) = q ∨ s ∨ r ∨ p;

(2) ID(� 
 G) = {q, s}, and thus the greatest EHS-hypothesis w.r.t ≤ is r ∨ p;
(3) since the greatest EHS-hypothesis w.r.t ≤ is an explanans, we have that the only

EH-hypothesis is r ∨ p.

Example 4.5 Take the abductive problem (p ∧ ¬q) → r , q → ¬r , ?© � r
Example 4.3:

(1) the only reduct under Weakening and Cut of top
(� 
 G) is { 
 r , p ; q 
 r},
and thus LCH(� 
 G) = (r ∨ p) ∧ (r ∨ ¬q);
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(2) ID(� 
 G) = {r , q}, and thus the greatest EHS(� 
 G) w.r.t ≤ is 	 → ⊥, which
is not an explanans;

(3) the greatest EHS-hypothesis w.r.t. ≤ which is an explanans is p ∧ ¬q: the only
EH-hypothesis is p ∧ ¬q, as expected.

Example 4.6 Take the abductive problem (p ∧ ¬q) → r , q → ¬r , ?© � ¬r:
(1) the only reduct under Weakening and Cut of top
(� 
 G) is {r 
 q}, and thus

LCH(� 
 G) = r → q;
(2) ID(� 
 G) = {r , q}, and thus the greatest EHS-hypothesis w.r.t. ≤ is 	 → ⊥,

which is not an explanans;
(3) the greatest EHS-hypothesis w.r.t. ≤ which is an explanans is q: the only EH-

hypothesis is q, as expected.

Procedure 4.2 is an effective tool for tracking intuitively expected hypotheses in
familiar examples of abductive problem: we propose to take it as a normative standard
for the rational agent – even in cases where we lack equally strong intuitions.

5 Beyond Analyticity

As we have seen, given a problem �, ?© � G, analytic decomposition can be used
as a tool for generating formulas, possibly stronger than LCH(� 
 G), which satisfy
conditions A1 and, possibly, A2 – A3: since any A among these formulas is such that
AT(A) ⊆ AT(� 
 G) we say that they are analytic abductive hypotheses (possibly,
analytic explanantes). In order to track formulas obtained through decomposition in
full generality, we modify Procedure 3.1 as follows:

Procedure 5.1 (Strengthened Least Compromising Hypothesis). For any problem
�, ?© � G, the �S-strengthened least compromising hypothesis SLCH�S

(
�, ?© � G

)

is the formula obtained as follows:

(1) Decompose the antisequent� 
 G till the non-empty set of complementary clauses
top
(� 
 G) = {

�1 
 �1, . . . , �n 
 �n
}
is fully accomplished.

(2) Define a sequence �S = 〈S1, . . . , Sn〉 of subsets of AT(� 
 G), and, for each clause
�i 
 �i ∈ top
(� 
 G), take the largest clause �′

i 
 �′
i such that �′

i ⊆ �i ,
�′

i ⊆ �i and �′
i ∩ Si = �′

i ∩ Si = ∅.
(3) For each clause �′

i 
 �′
i thus obtained consider the formula Ci ≡ ∧

�′
i →∨

�′
i .

(4) Finally set SLCHS
(
�, ?© � G

) = C1 ∧ · · · ∧Cn (avoiding repetition of conjuncts).

Notice that, if �S = 〈S1, . . . , Sn〉, Si = S for any 1 ≤ i ≤ n and S ⊆ ID(� 
 G),
then SLCH�S(� 
 G) = EHS(� 
 G); if it is the case that S = ∅, then SLCH�S(� 
 G) =
LCH(� 
 G).

Example 5.1 We apply Procedure 5.1 to compute the formula SLCH�S
(
p → q, ?© �

p → r
)
for any �S:
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(1) By performing decomposition we get

top
(p → q, ?© � p → r) = {
q, p 
 r

}

and
AT(p → q, ?© � p → r) = {p, q, r}

(2) It is trivial to set an enumeration of the elements of top
(p → q, ?© � p → r).
(3) For any �S we obtain a single clause, which we turn into its corresponding formula

to obtain the corresponding SLCH�S-hypothesis:

q, p 
 r ⇒ (q ∧ p) → r

p 
 r ⇒ p → r

q 
 r ⇒ q → r

q, p 
 ⇒ ¬q ∨ ¬p

q 
 ⇒ ¬q

p 
 ⇒ ¬p


 r ⇒ r


 ⇒ 	 → ⊥
Remark that, for any problem �, ?© � G, if top
(� 
 G) = {

�1 
 �1, . . . , �n 

�n

}
and

n∑

i=1
|AT(�i 
 �i )| = k, then there are (at most) 2k SLCH�S-hypotheses.

We can optimize Procedure 5.1, similarly to how we did for Procedure 4.1. In
particular, if the set of clauses S generated by step (2) in Procedure 5.1 includes the
empty antisequent, then the only reduct of S underWeakening and Cut is the singleton
of the empty antisequent. As a result, the refined Procedure 5.1 sets an upper bound
on the number of all SLCH�S-hypotheses to 2k − 2(2n−1 − 1).

It is immediate to verify that any SLCH�S-hypothesis satisfies condition A1, as shown
in Theorem 4.1 and Corollaries 4.1 and 4.2. Moreover, a SLCH�S-hypothesis satisfies
conditions A2 – A3 if top
(SLCH�S(� 
 G) 
) contains at least one clause that is
not a (possibly) weakened version of a clause in top
(G 
), and at least one clause
which is not a (possibly) weakened version of a clause in top
(
 ∧

�), as shown in
Theorem 4.2.

Let us introduce a bit more of terminology: for any formula A, if top( ∗ A) =
{
�1

∗ �m, . . . , �n
∗ �m

}
then we use cn f (A) to refer to

m∧

i=1
(
∧

�i → ∨
�i ). The

following result shows that any analytic explanans A logically implies some SLCH�S-
explanans:

Theorem 5.1 For any problem �, ?© � G, if a formula is an analytic explanans A,
then A is logically equivalent to B ∧ C, where
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(i) B = SLCH �S1(� 
 G) ∧ · · · ∧ SLCH �Sn (� 
 G), with SLCH �Si (� 
 G) being an
explanans for any 1 ≤ i ≤ n;

(i i) G4 refutes �,C � G.

Proof First, notice that if A is an (analytic) explanans, then it is a contingent formula.
This is because if A were a tautology, then the refutability of � � G would imply the
refutability of �, A � G (against condition A1). Similarly, if A were a contradiction,

then G4 would prove both A � G and �, A � G (against conditions A2 and A3,
respectively).
If A is a contingent formula, then by Fact 2.1, top
(
 A) �= ∅ and top
(A 
) �= ∅.
If top�(A 
) �= ∅, then we can always consider a formula A′ that is logically
equivalent to A and such that top(A′ 
) = top
(A 
). Let us assume that top(A′ 

) = {

�1 
 �1, . . . , �m 
 �m
}
and that top
(� 
 G) = {

�1 
 �1, . . . , �n 
 �n
}
:

if �, A � G, and thus �, A′ � G, is provable, then for any �i 
 �i ∈ top(A′ 
)

and any � j 
 � j ∈ top
(� 
 G) there is either one non-empty �i j ⊆ �i such that
�i j = �i ∩ � j or one non-empty �i j ⊆ �i such that �i j = �i ∩ � j .
Bearing these facts in mind, we can proceed to prove the two statements separately.

(i) Consider any �′ ∗ �′ ∈ top(
 A′) such that, for a given j such that 1 ≤ j ≤ n,
if p, q ∈ �′, then p ∈ �i j and q ∈ �i ′j and, if r , s ∈ �′, then r ∈ �i j

and s ∈ �i ′j – with 1 ≤ i �= i ′ ≤ m: it is easy to see that there is (at least)

one �S such that �′ 
 �′ ∈ top
(
 SLCH�S(� 
 G)). Since the set of all �S-
strengthenings of a given clause � j 
 � j ∈ top
(� 
 G) cannot be totally
ordered with respect to deductive strength (cf. Theorem 4.1), it may be the case
that (a reduct under Weakening and Cut of) the set of the �S-strengthenings of
� j 
 � j ∈ top
(� 
 G) included in top(
 A′) does not narrow down to a
singleton. This holds for any 1 ≤ j ≤ n, and therefore, there exist �S1, . . . , �SN
such that top


( 
 SLCH �S1(� 
 G) ∧ · · · ∧ SLCH �SN (� 
 G)
) ⊆ top(
 A′).

At this point, we must consider two possibilities: either (a) for any �i 
 �i ∈
top(A′ 
)we have that�i = (�i1 ∪· · ·∪�in ) and�i = (�i1 ∪· · ·∪�in ), or (b)
there is at least one�i 
 �i ∈ top(A′ 
) such that either�i ⊃ (�i1 ∪· · ·∪�in )

or �i ⊃ (�i1 ∪ · · · ∪ �in ). In the first case we have top

( 
 SLCH �S1(� 


G) ∧ · · · ∧ SLCH �SN (� 
 G)
) = top(
 A′): since cn f (A′) ≡ A′ by Fact 2.3, we

have that A is logically equivalent to SLCH �S1(� 
 G)∧ · · ·∧ SLCH �SN (� 
 G)∧	.
In the second case, there must exist a formula C such that top( ∗ C) = top(

A′) \ top


( 
 SLCH �S1(� 
 G) ∧ · · · ∧ SLCH �SN (� 
 G)
)
. Therefore, A must be

logically equivalent to SLCH �S1(� 
 G)∧ · · · ∧ SLCH �SN (� 
 G)∧C . We can reach
the conclusion by noticing that SLCH �S1(� 
 G), . . . , SLCH �SN (� 
 G) necessarily
satisfy conditions A2 – A3.

(i i) Since G4 refutes �,	 � G, we focus on case (b) and assume by contradiction

that G4 proves �,C � G. The provability of �,C � G implies that for any

	 ∗ 
 ∈ top(C ∗) and any � j � � j ∈ top
(� 
 G), either G4 proves 	 � 
,
or there exists a non-empty 	 j ⊆ 	 such that 	 j = 	 ∩ � j , or a non-empty

 j ⊆ 
 such that 
 j = 
 ∩ � j . If 	 � 
 were always provable, then C would
be contradictory by Fact 2.1, leading to a contradiction. As a consequence, there
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must be (at least) one 	 
 
 ∈ top(C 
) such that for any 1 ≤ j ≤ n, there
is either one non-empty 	 j ⊆ 	 such that 	 j = 	 ∩ � j or one non-empty

 j ⊆ 
 such that 
 j = 
 ∩ � j . This means that there is (at least) one �S
such that top
(
 SLCH�S(� 
 G)) ⊆ top( ∗ C). By construction, for any clause
	′ ∗ 
′ ∈ top( ∗ C), we have that there is (at least) one atom p such that if
p ∈ 	′, then p /∈ � j , and if p ∈ 
′, then p /∈ � j , for any 1 ≤ j ≤ n.
As a result, for any �S, top
(
 SLCH�S(� 
 G)) � top( ∗ C), which leads to a
contradiction.

��
Corollary 5.1 For any problem �, ?© � G, if a formula A is an analytic explanans and
CUT(
 A) = ∅ then cn f (A) = B ∧ C, where

(i) B = SLCH �S1(� 
 G) ∧ · · · ∧ SLCH �Sn (� 
 G), with SLCH �Si (� 
 G) being an
explanans for any 1 ≤ i ≤ n;

(i i) AT(C) ⊆ AT(� 
 G) and G4 refutes �,C � G.

Example 5.2 Take the problem p → q, ?© � p → r of Example 5.1: (¬q ∨ ¬p) ∨
(r ∧ ¬r) is an analytic explanans, and it is logically equivalent to ((q ∧ p) →
r) ∧ (¬q ∨ ¬p ∨ ¬r), with (q ∧ p) → r being an SLCH�S-explanans and the sequent
p → q,¬q ∨ ¬p ∨ ¬r � p → r being refutable.

Theorem 5.1 establishes that, for any problem �, ?© � G, each analytic explanans
A can be decomposed into a conjunction of SLCH�S-explanantes for �, ?© � G and
a ‘derived’ problem �,C, ?© � G. The following proposition shows that any SLCH�S-
explanans for�, ?© � G is an SLCH�S-explanans for the derived problem�,C, ?© � G:

Proposition 5.1 For any problem �, ?© � G and each analytic explanans A, if A ≡
B ∧ C, B =

n∧

i=1
SLCH �Si (� 
 G) and G4 refutes �,C � G, then any SLCH�S-abductive

hypothesis for �, ?© � G is an SLCH�S-abductive hypothesis for �,C, ?© � G.

Proof It is routine to show that � 
 � ∈ top
(�,C 
 G) if and only if there exist
�′ 
 �′ ∈ top
(� 
 G) and �′′ 
 �′′ ∈ top
(C 
) such that �′ ∪ �′′ = �

and �′ ∪ �′′ = �. As a result, if there is an atom p ∈ (� ∪ �) such that p ∈
(�′ ∪ �′) ∩ (�′′ ∪ �′′), then p ∈ �′ if and only if p ∈ �′′, and p ∈ �′ if and only
if p ∈ �′′: this means that if p is erased from �′ 
 �′ then it is also erased from
� 
 �. By construction, any SLCH�S-abductive hypothesis is obtained bynon-uniformly
deleting atoms from clauses in top
(� 
 G): this suffices to get the conclusion. ��

For any problem �, ?© � G we say that a set of explanantes A1, . . . , An is a set of
alternative abductive solutions just if A1, . . . , An are pairwise mutual exclusive and

jointly exhaustive – i.e., such that G4 proves Ai , A j � and � A1, . . . , An respectively,
for any 1 ≤ i �= j ≤ n (cf. [10], pp. 45-46): the following proposition shows that the
set of all analytic explanantes is not a set of alternative abductive solutions.

Proposition 5.2 For any problem �, ?© � G, if LCH(� 
 G), A1, . . . , An are distinct
formulas respecting condition A1 – A3, then
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(i) LCH(� 
 G) and Ai are not mutually exclusive, for any 1 ≤ i ≤ n;
(i i) LCH(� 
 G), A1, . . . , An are not jointly exhaustive.

Proof We treat each case separately.

(i) Assume, by contrast, that LCH(� 
 G), Ai respect conditions A1 – A3, for any

1 ≤ i ≤ n, while being mutually exclusive. This means that G4 proves LCH(� 

G), Ai �: since Theorem 3.2 guarantees that G4 proves Ai � LCH(� 
 G), we

have that G4 proves Ai � by closure under Cut – i.e. a contradiction.
(i i) Again, assume by contrast that LCH(� 
 G), A1, . . . , An respect condition A1

and that LCH(� 
 G), A1, . . . , An are jointly exhaustive. We have that G4 proves
both �, LCH(� 
 G) � G and � LCH(� 
 G), A1, . . . , An : by closure of G4

under Cut it follows that G4 proves � � G, A1, . . . , An . We can iterate n times
this reasoning step, by taking at each step exactly one among A1, . . . , An as cut

formula: finally, we reach the conclusion that G4 proves � � G – a contradiction.
��

At this point it is natural to ask whether our framework can be used to investigate
the (infinite) set of non-analytic abductive hypotheses (explanantes) – i.e., formulas A
obeying conditionA1 (conditionsA1 –A3, respectively) such that AT(A) � AT(� 
 G).

Example 5.3 Take the problem p → q, ?© � p → r of Example 5.1: (¬p ∧ s) ∨
(¬q∧ t) is a non-analytic abductive hypothesis, whereas¬q∧(s∨ t) is a non-analytic
explanans.

First, let us notice that non-analytic explanantes enjoy the same kind of ‘abductive
normal form’ as analytic ones:

Theorem 5.2 For any problem �, ?© � G, if a formula is a non-analytic explanans A,
then A is logically equivalent to B ∧ C, where

(i) B = SLCH �S1(� 
 G) ∧ · · · ∧ SLCH �Sn (� 
 G), with SLCH �Si (� 
 G) being an
explanans for any 1 ≤ i ≤ n;

(i i) G4 refutes �,C � G.

Proof Analogous to the proof of Theorem 5.1. ��
Corollary 5.2 For any problem �, ?© � G, if a formula A is a non-analytic explanans
and CUT(
 A) = ∅ then cn f (A) = B ∧ C, where

(i) B = SLCH �S1(� 
 G) ∧ · · · ∧ SLCH �Sn (� 
 G), with SLCH �Si (� 
 G) being an
explanans for any 1 ≤ i ≤ n;

(i i) AT(C) � AT(� 
 G) and G4 refutes �,C � G.

Example 5.4 Take the problem p → q, ?© � p → r of Example 5.1: ((q ∧ p)∨ s) →
(r ∧ t) is a non-analytic explanans, and it is logically equivalent to ((q ∧ p) →
r)∧ ((q∧ p) → t)∧ (s → r)∧ (s → t), with (q∧ p) → r being an SLCH�S-explanans.
Then, the sequent p → q, ((q ∧ p) → t) ∧ (s → r) ∧ (s → t) � p → r being
refutable and AT

(
((q ∧ p) → t) ∧ (s → r) ∧ (s → t)

)
� AT

(
p → q, ?© � p → r

)
.
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Theorem 5.2 states that for any problem of the form �, ?© � G and any non-
analytic explanans A there exists a “derived” problem of the form �,C, ?© � G,
which possibly makes all new information in A explicit in the theoretical background.
Corollary 5.2 further refines this result for a specific class of non-analytic explanantes.
It is easy to show that any SLCH�S-explanans for�, ?© � G is also an SLCH�S-explanans for
�,C, ?© � G (as per Proposition 5.1). Therefore, we can conclude that the deductive
saturation of a problem �, ?© � G through a non-analytic explanans A can always
be understood as the deductive saturation of a (possibly) distinct problem of the form
�,C, ?© � G through an analytic explanans. This implies that the set of analytic
abductive solutions enjoys a certain “completeness”: in the end, deductive saturation
can always be performed via analytic explanantes including SLCH�S-explanantes.

Let us end this section by proposing the following conjecture: for any problem of
the form �, ?© � G and any explanans A, A is candidate for the best explanans only

if A is logically equivalent to B ∧ C , where C is such that G4 refutes �,C � G and
B is a conjunction of EH-hypotheses for the problem �,C, ?© � G (as described in
Procedure 4.2).

6 Conclusion

In this work, we presented a proof-theoretic framework to analyze abductive reasoning
in classical propositional logic by reading abduction as an enthymematic deductive
argument in reverse. We assumed the minimal set of logical conditions A1-A3 for
abductive explanations, though we acknowledge that the literature suggests additional
conditions ([13, 33]) that could be explored in combination with the ones we focussed
on in these pages. We also highlighted certain discrepancies between the deductively
minimal solution and the expected solution. This led us to design an effective proce-
dure (Procedure 4.2) which recovers what seems to better approximate the reasoner’s
expectations by pruning the leaves of the deduction-tree from the redundant informa-
tion.

It should be noticed that, when presented in a standard natural deduction calculus,
achieving deductive saturation through an expected hypothesis often requires fewer
steps than achieving it through the minimal hypothesis. This suggests that a better
understanding of the notion of expected explanation could be gained by aiming for
minimality in terms of derivation length. As shown in Fig. 4, consider the abductive
problem p → q, ?© � p → r . It can be observed that inserting the expected hypoth-
esis q → r results in a simpler derivation compared to assuming the deductively
minimal formula (p ∧ q) → r . However, such a characterization is inherently arbi-
trary because the complexity of a derivation depends on the specific formalism used
as a measuring device.

We believe it would be valuable to broaden the application of our proof-theoretic
framework to include conservative extensions of classical propositional logic, such as
modal logics ([19, 20]), supraclassical logics ([16, 24]), non-monotonic logics ([2, 9,
26, 30]), and a logic for exception and typicality ([26]). Moreover, a proof-theoretic
setting that unifies aspects of default reasoning and abductive reasoning could provide
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Fig. 4 LCH and EH from the
natural deduction point of view

fresh insight into the relationship between the two ([11, 27, 34]). Additionally, it
appears that modifications of this framework couldwork for other non-classical logics.
Moreover, the refutation-based approach presented in our work can, in theory, be
extended to decidable fragments of predicate logic, with monadic first-order logic
presenting an interesting case study, particularly in relation to the traditional topic
of inventio medii (see e.g. [17]). A broader perspective could involve taming full
first-order logic by utilizing an appropriate notion of approximated refutation and
approximated deductive saturation.

Procedure 4.2 provides a proof-theoretic account of the process whereby a rational
agent produces an optimal analytic solution for a given abductive problem. How-
ever, there has been an increasing emphasis among philosophers of science on cases
of creative abduction, that is situations in which the reasoner formulates abductive
hypotheses by incorporating pieces of information not deducible from the origi-
nal problem [31]. By its very nature, deductive logic cannot anticipate the specific
non-analytic information that a rational agent will utilize to solve the abductive prob-
lem. Nonetheless, the technical results presented in Section 5 offer a comprehensive
approach to effectively distinguish analytic components fromnon-analytic oneswithin
any non-analytical solution. Thismethodical treatment of non-analytic solutions seems
to suggest that supraclassical analytic calculimay offer the appropriate proof-theoretic
framework for tackling the challenge of creative abduction (cf. [24]).

Finally, it is widely accepted that the best explanans should be chosen based on
its higher degree of truthlikeness or verisimilitude ([10], p. 48; [5, 21]). It would be
interesting to examine our approach for identifying candidates for the best explanans in
relation to the definitions of truthlikeness proposed in the literature ([22]), and explore
the possibility of using a fractional approach ([25]) to further refine our method.

Legend of the Symbols

top(� ∗ �) = set of clauses obtained after decomposing � ∗ �

top�(� ∗ �) = set of identity clauses obtained after decomposing � ∗ �

top
(� ∗ �) = set of complementary clauses obtained after decomposing � ∗ �

AT(� ∗ �) = set of all atoms occurring in the clauses of top(� ∗ �)

ID(� ∗ �) = set of all identity atoms occurring in the clauses of top( ∗ A)

CUT(� ∗ �) = set of all cut atoms occurring in the clauses of top( ∗ A)
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AT(A) = set of all atomic subformulas of A
cn f (A) = conjunction of formula translations of clauses in top( ∗ A)

�, ?© � G = abductive problem with G as explanandum and � as theoretical
background
LCH

(
�, ?© � G

)
= the least compromising hypothesis for �, ?© � G

EHS
(
�, ?© � G

)
= the S-approximation to an expected hypothesis for �, ?© � G

EH
(
�, ?© � G

)
= an expected hypothesis for �, ?© � G

SLCH�S
(
�, ?© � G

)
= the �S-strengthened least compromising hypothesis for�, ?© �

G
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