1,014 research outputs found

    S2ST: A Relational RDF Database Management System

    Get PDF
    The explosive growth of RDF data on the Semantic Web drives the need for novel database systems that can efficiently store and query large RDF datasets. To achieve good performance and scalability of query processing, most existing RDF storage systems use a relational database management system as a backend to manage RDF data. In this paper, we describe the design and implementation of a Relational RDF Database Management System. Our main research contributions are: (1) We propose a formal model of a Relational RDF Database Management System (RRDBMS), (2) We propose generic algorithms for schema, data and query mapping, (3) We implement the first and only RRDBMS, S2ST, that supports multiple relational database management systems, user-customizable schema mapping, schema-independent data mapping, and semantics-preserving query translation

    The Role of Mediation in Public Interest Disputes

    Get PDF
    The past two decades have seen a rapid increase in public interest litigation. However, in a time of decreased public funding, the survival of public interest law practice may depend on the availability of less costly alternatives to litigation. This Commentary suggests and explores one alternative: mediation. The Commentary first describes the mediation process and its general contribution to dispute resolution, and then addresses the particular value of mediation in public interest disputes. The Commentary proposes incorporating mediation into the public interest dispute resolution process, including judicial screening for cases ripe for mediation, and exploration by the federal government of potential uses of mediation in disputes in which the government is a party

    10.3 High-temperature Instrumentation

    Get PDF
    This viewgraph presentation describes high temperature instrumentation development from 1960-1970, 1980-1990 and 2000-present. The contents include: 1) Background; 2) Objective; 3) Application and Sensor; 4) Attachment Techniques; 5) Evaluation/Characterization Testing; and 6) Future testing

    High-Temperature Structural Instrumentation Developments for Hypersonic Airframe Applications

    Get PDF
    This viewgraph presentation describes the high temperature structural measurements developments for hypersonic airframes applications

    Application of High-Temperature Extrinsic Fabry-Perot Interferometer Strain Sensor

    Get PDF
    In this presentation to the NASA Aeronautics Sensor Working Group the application of a strain sensor is outlined. The high-temperature extrinsic Fabry-Perot interferometer (EFPI) strain sensor was developed due to a need for robust strain sensors that operate accurately and reliably beyond 1800 F. Specifically, the new strain sensor would provide data for validating finite element models and thermal-structural analyses. Sensor attachment techniques were also developed to improve methods of handling and protecting the fragile sensors during the harsh installation process. It was determined that thermal sprayed attachments are preferable even though cements are simpler to apply as cements are more prone to bond failure and are often corrosive. Previous thermal/mechanical cantilever beam testing of EFPI yielded very little change to 1200 F, with excellent correlation with SG to 550 F. Current combined thermal/mechanical loading for sensitivity testing is accomplished by a furnace/cantilever beam loading system. Dilatometer testing has can also be used in sensor characterization to evaluate bond integrity, evaluate sensitivity and accuracy and to evaluate sensor-to-sensor scatter, repeatability, hysteresis and drift. Future fiber optic testing will examine single-mode silica EFPIs in a combined thermal/mechanical load fixture on C-C and C-SiC substrates, develop a multi-mode Sapphire strain-sensor, test and evaluate high-temperature fiber Bragg Gratings for use as strain and temperature sensors and attach and evaluate a high-temperature heat flux gauge

    Development and Ground-Test Validation of Fiber Optic Sensor Attachment Techniques for Hot Structures Applications

    Get PDF
    Fiber Optic Strain Measurements: a) Successfully attached silica fiber optic sensors to both metallics and composites; b) Accomplished valid EFPI strain measurements to 1850 F; c) Successfully attached EFPI sensors to large scale hot-structures; and d) Attached and thermally validated FBG bond and epsilon(sub app). Future Development a) Improve characterization of sensors on C-C and C-SiC substrates; b) Apply application to other composites such as SiC-SiC; c) Assist development of interferometer based Sapphire sensor currently being conducted under a Phase II SBIR; and d) Complete combined thermal/mechanical testing of FBG on composite substrates in controlled laboratory environment

    Fiber-Optic Sensing System: Overview, Development and Deployment in Flight at NASA

    Get PDF
    An overview of the research and technological development of the fiber-optic sensing system (FOSS) at the National Aeronautics and Space Administration Armstrong Flight Research Center (NASA AFRC) is presented. Theory behind fiber Bragg grating (FBG) sensors, as well as interrogation technique based on optical frequency domain reflectometry (OFDR) is discussed. Assessment and validation of FOSS as an accurate measurement tool for structural health monitoring is realized in the laboratory environment as well as large-scale flight deployment

    Method and Apparatus of Multiplexing and Acquiring Data from Multiple Optical Fibers Using a Single Data Channel of an Optical Frequency-Domain Reflectometry (OFDR) System

    Get PDF
    A method and system for multiplexing a network of parallel fiber Bragg grating (FBG) sensor-fibers to a single acquisition channel of a closed Michelson interferometer system via a fiber splitter by distinguishing each branch of fiber sensors in the spatial domain. On each branch of the splitter, the fibers have a specific pre-determined length, effectively separating each branch of fiber sensors spatially. In the spatial domain the fiber branches are seen as part of one acquisition channel on the interrogation system. However, the FBG-reference arm beat frequency information for each fiber is retained. Since the beat frequency is generated between the reference arm, the effective fiber length of each successive branch includes the entire length of the preceding branch. The multiple branches are seen as one fiber having three segments where the segments can be resolved. This greatly simplifies optical, electronic and computational complexity, and is especially suited for use in multiplexed or branched OFS networks for SHM of large and/or distributed structures which need a lot of measurement points

    Application of Fiber Optic Instrumentation

    Get PDF
    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented
    • …
    corecore