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ABSTRACT 

 

 

Piazza, Anthony T., S2ST: A Relational RDF Database Management System. Master of 

Science (MS), December, 2009, 45 pp., 11 figures, references, 27 titles. 

The explosive growth of RDF data on the Semantic Web drives the need for novel 

database systems that can efficiently store and query large RDF datasets. To achieve good 

performance and scalability of query processing, most existing RDF storage systems use 

a relational database management system as a backend to manage RDF data. In this 

paper, we describe the design and implementation of a Relational RDF Database 

Management System. Our main research contributions are: (1) We propose a formal 

model of a Relational RDF Database Management System (RRDBMS), (2) We propose 

generic algorithms for schema, data and query mapping, (3) We implement the first and 

only RRDBMS, S2ST, that supports multiple relational database management systems, 

user-customizable schema mapping, schema-independent data mapping, and semantics-

preserving query translation. 

 



iv 

ACKNOWLEDGEMENTS 

 

 

 First, I want to thank my entire family for all of their encouragement and support. 

Second, I want to thank my advisor, Dr. Artem Chebotko, for allowing me to work with 

him. Lastly, I want to thank all of the graduate students I have studied with, for making 

this a truly memorable experience. 

 



v 

TABLE OF CONTENTS 

 

Page 

 

ABSTRACT………………………………………………………………………….. iii 

ACKNOWLEDGEMENTS………………………………………………………….. iv 

TABLE OF CONTENTS…………………………………………………………….. v 

LIST OF FIGURES…………………………………………………………………... vii 

CHAPTER I. INTRODUCTION…………………………………………………….. 1 

Research Motivation…………………………………………………………. 2 

Research Contributions………………………………………………………. 3 

Organization of this Document………………………………………………. 3 

CHAPTER II. FOUNDATIONS OF RELATIONAL RDF DATABASE 

MANAGEMENT SYSTEMS………………………………………………………... 4 

Preliminaries: RDF and SPARQL……………………………………………. 4 

Relational RDF Database Management System……………………………… 6 

Logical Schema………………………………………………………………. 7 

Physical Schema……………………………………………………………… 11 

Data Management Operations………………………………………………… 18 

CHAPTER III. SERVICE-ORIENTED ARCHITECTURE OF AN RRDBMS……... 23 

CHAPTER IV. DESIGN AND IMPLEMENTATION OF S2ST…………………….. 27 

Schema Mapping Services……………………………………………………. 27 



vi 

Data Mapping Services……………………………………………………….. 30 

Query Mapping Services……………………………………………………… 34 

CHAPTER V. RELATED WORK……………………………………………………. 37 

CHAPTER VI. CONCLUSION AND FUTURE WORK……………………………. 41 

REFERENCES……………………………………………………………………….. 42 

BIOGRAPHICAL SKETCH…………………………………………………………. 45 

 

 



vii 

LIST OF FIGURES 

 

 

Page 

 

Figure 1: Sample RDF Graph………………………………………………………. 5 

Figure 2: Function Compute-α……………………………………………………… 13 

Figure 3: Function Compute-β……………………………………………………… 13 

Figure 4: Algorithm CreateLS………………………………………………………. 18 

Figure 5: Algorithm SM…………………………………………………………….. 20 

Figure 6: Algorithm DM…………………………………………………………….. 22 

Figure 7: Service-Oriented Architecture of an RRDBMS…………………………... 24 

Figure 8: S2ST Metadata Model…………………………………………………….. 30 

Figure 9: Data Mapping Architecture of S2ST……………………………………… 31 

Figure 10: Data Mapping Sequence Diagram……………………………………….. 32 

Figure 11: Query Mapping Sequence Diagram……………………………………… 35 

 



1 

CHAPTER I 

 

 

INTRODUCTION 

 

 

 We are living in a time of unprecedented information growth. It is estimated that 

the amount of digital information in the world today is doubling in size every 18 months. 

This explosive growth presents a number of interesting challenges for organizations that 

produce, collect and process large amounts of digital information. One common problem 

is that much of the data being produced lacks semantics. Semantics provides meaning to 

data. The World Wide Web currently contains a vast amount of data without semantics. 

The World Wide Web Consortium (W3C) has proposed standards that make it possible 

for data to be shared and reused across application, enterprise, and community 

boundaries. These standards promote the development of the next-generation Web, 

known as the Semantic Web. 

 The vast majority of information available on the Web today is published using 

the HyperText Markup Language (HTML). HTML is a standard for describing the 

structure of published information. Web browsers use this structural information to render 

the information in a way that facilitates consumption by humans. Information published 

using HTML is not intended for consumption by computers, which makes it difficult for 

them to make effective use of the ever increasing volume of information available on the 

Web. To solve this problem, theW3C has proposed new standards to enable computers to 

discern the meaning of available information. XML (eXtensible Markup Language) is a 
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W3C standard that provides a set of rules for encoding information. Adoption of XML 

has now become widespread. Besides having a standard way to encode information, there 

needs to be a standard way to express its meaning. That’s the purpose of RDF (Resource 

Description Framework), a W3C standard that supports modeling of information that is 

made available as web resources. RDF is based on the idea of making statements about 

web resources in the form of subject-predicate-object expressions, called triples. Triples 

can be encoded using several different W3C standard formats, including XML, N-Triples 

and N3. Triples are an intuitive way to describe most of the information being processed 

by computers today. 

 A number of systems have been developed to support large-scale RDF storage 

using relational database backends. To resolve the conflict between the graph RDF data 

model and the relational data model, these systems require various mappings between the 

two data models, such as schema mapping, data mapping, and query mapping (a.k.a. 

query translation). Schema mapping is used to generate a relational database schema for 

storing RDF data. Data mapping is used to shred RDF triples into relational tuples and 

insert them into the database. Finally, query mapping is used to translate SPARQL queries 

into equivalent SQL queries, which are then evaluated by the relational engine and the 

results are returned as SPARQL query solutions. 

Research Motivation 

 As the use of RDF becomes more widespread, so too will be the need for systems 

that support storing and querying of RDF data. There have been numerous such systems 

developed in recent years. Many of these systems are based on relational database 

technology. This approach leverages the mature and vigorous storage and query 
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capabilities provided by relational databases. A careful study of these systems reveals a 

number of significant limitations including: hard-coded support for only one or two fixed 

schema mapping strategies, data mapping and query translation algorithms that must be 

reinvented for every new schema mapping strategy and support for very few relational 

database management systems, just to name a few. Our motivation is to develop a system 

for storing and querying RDF data based on relational database technology without these 

limitations. 

Research Contributions 

 Our research contributions are: (1) a formal model for a relational RDF database 

management system (RRDBMS), (2) generic algorithms for schema, data and query 

mapping, and (3) the realization of an RRDBMS that supports all of the most popular 

database management systems. 

 

Organization of this Document 

 

 

 The remaining chapters of this document are organized as follows: Chapter 2 lists 

a number of preliminary definitions and then presents a formal model for addressing the 

limitations of existing RDF storage systems, Chapter 3 defines a service-oriented 

architecture for building a relational RDF database management system, Chapter 4 details 

the realization of a relational RDF database management system, Chapter 5 reviews 

related research, and Chapter 6 concludes the document and reviews some interesting 

research topics for future work. 
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CHAPTER II 

 

 

FOUNDATIONS OF RELATIONAL RDF  

DATABASE MANAGEMENT SYSTEMS 

 

 

 It may be helpful to review some of the fundamental definitions before delving 

into the more complex topics which depend on them. We start this chapter by discussing 

some of them most important terms related to semantic web technology. After that, we 

present a formal model for a Relational RDF Database Management System. 

Preliminaries: RDF and SPARQL 

 Let I, B, L, and V denote pairwise disjoint infinite sets of Internationalized 

Resource Identifiers (IRIs), blank nodes, literals, and variables, respectively. Let IB, IL, 

IV, IBL, and IVL denote I ∪ B, I ∪ L, I ∪ V, I ∪ B ∪ L, and I ∪ V ∪ L, respectively. 

Elements of the set IBL are also called RDF terms. In the following, we formalize the 

notions of RDF triple, RDF graph, triple pattern, graph pattern, and SPARQL query. 

Definition 1 (RDF triple and RDF graph) 

An RDF triple t is a tuple (s, p, o) ∈ (IB) × I × (IBL), where s, p, and o are a subject, 

predicate, and object, respectively. An RDF graph G is a set of RDF triples. We define T 

and G as infinite sets of all possible RDF triples and graphs, respectively. 
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 A sample RDF graph that we use for subsequent examples is shown in Figure 1. 

The RDF graph is represented as a set of 11 triples, as well as a labeled graph, in which 

edges are directed from subjects to objects and represent predicates, circles denote IRIs, 

and rectangles denote literals. 

 

 

 We focus on the core fragment of SPARQL defined in the following. 

Definition 2 (Triple pattern) 

A triple pattern tp is a triple (sp, pp, op) ∈ (IVL) × (IV) × (IVL), where sp, pp, and op are 

a subject pattern, predicate pattern, and object pattern, respectively. We define TP as an 

infinite set of all possible triple patterns. 

Definition 3 (Graph pattern) 

A graph pattern gp is defined by the following abstract grammar: 

 

gp → tp | gp AND gp | gp OPT gp | gp UNION gp | gp FILTER expr 

 

where AND, OPT, and UNION are binary operators that correspond to SPARQL 

conjunction, OPTIONAL, and UNION constructs, respectively. FILTER expr represents 

Figure 1: Sample RDF Graph 
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the FILTER construct with a boolean expression expr, which is constructed using 

elements of the set IVL, constants, logical connectives (¬, ∨, ∧), inequality symbols  

(<, ≤, ≥, >), the equality symbol (=), unary predicates like bound, isIRI, and other 

features defined in [24]. We define GP as an infinite set of all possible graph patterns. 

Definition 4 (SPARQL query) 

A SPARQL query sparql is defined as 

sparql → SELECT varlist WHERE (gp) 

 

where varlist = (v1, v2, ..., vn) is an ordered list of variables and varlist ⊆ var(gp). We 

define Q as an infinite set of all possible SPARQL queries that can be generated by the 

defined grammar. 

Relational RDF Database Management System 

 A Relational RDF Database Management System (RRDBMS) relies on a 

Relational Database Management System (RDBMS) to store and query RDF datasets. 

RRDBMS provides a collection of data structures and algorithms that map operations on 

RDF data to equivalent operations on relational data in an RDBMS. In this section, we 

formalize the notion of RRDBMS by giving its high-level definition first and defining its 

individual components afterwards. 

Definition 5 (Relational RDF Database Management System) 

A relational RDF database management system (RRDBMS) is a tuple (RDBMS, DB, LS, 

PS, ALG), where 
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� RDBMS is a set of RDBMS backends that manage RDF data, 

� DB is a set of relational databases implemented in the RDBMS backends to store 

RDF data, 

� LS is a set of logical schemas that specify how a new relational database (becomes 

an element in DB) can be created, 

� PS is a set of physical schemas that are extended instantiations of logical schemas, 

such that each physical schema PS ∈ PS describes a relational database DB ∈ DB 

and is derived from a logical schema LS ∈ LS, and 

� ALG is a collection of algorithms that perform operations in the RRDBMS, such 

as creation of a logical schema, creation of a physical schema and relational 

database schema, mapping of RDF data to relational data, and SPARQL-to-SQL 

query translation. 

 

 While the notions of RDBMS and relational database are well-understood, 

RRDBMS logical schemas, physical schemas and algorithms require further explanation 

found in the following subsections. 

Logical Schema 

 The purpose of a logical schema is to encode the structure of a relational database 

that can be used for RDF storage, such that this structure can be later instantiated in one 

or more RDBMSs. Therefore, the logical schema should record a set of relation names R 

and a set of relational attribute names A, such that each a ∈ A is associated with one or 

many relations in R. While attribute names (further “attributes” for simplicity) are 

represented by string literals, relation names (further “relations” for simplicity) may be 
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data-driven, i.e., they may depend on values found in RDF data, and thus may have more 

complex structure. In addition, the logical schema should capture the information about 

what triples each relation can store and what attributes of the relation are used to store the 

components (subject, predicate, and object) of triples. To achieve this, we introduce two 

mappings, called γ and δ. 

Definition 6 (Mapping γ) 

Given a set of relations R and a set of triple patterns TP, a mapping γ is a many-to-many 

mapping γ : R → TP, if given a relation R ∈ R, γ (R) is a set of triple patterns TPR = {tp1, 

tp2, ..., tpn} ⊂ TP, such that for any two distinct triple patterns tpi ∈ TPR and tpj ∈ TPR, tpi 

does not subsume tpj and tpj does not subsume tpi. 

 Mapping γ precisely defines what RDF triples can be stored in relation R ∈ R, 

such that if triple t ∈ T matches triple pattern tp ∈ γ(R), then R is used to store t. As we 

mentioned earlier, besides string literals, R ∈ R may include one or more special variables 

%sub%, %pre%, and %obj%, that are interpolated using the corresponding values of a 

triple t = (s, p, o) ∈ T , such that t matches a triple pattern tp ∈ γ (R). This provides 

support for data-driven relations, whose names are derived only when RDF data is being 

inserted into an RRDBMS. 

 Mapping δ defines what specific components of RDF triples, i.e., subject, 

predicate, and object, relational attributes can store. 
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Definition 7 (Mapping δ) 

Given a set of relations R, a set of relational attributes A, and a set P = {sub, pre, obj}, a 

mapping δ is a many-to-one mapping δ : R × A → P, if given a relation R ∈ R and its 

attribute a ∈ A, δ(R, a) returns a position pos ∈ P, such that for any two distinct attributes 

a1 and a2 of R, if pos1 = δ(R, a1) and pos2 = δ(R, a2), then pos1 ≠ pos2. 

 Mapping δ restricts a relational attribute to store subjects, predicates or objects, 

but not the combination of those, i.e., the same attribute cannot store a subject of one 

triple and an object of another triple. In addition, if one attribute of a relation stores triple 

subjects, no other attribute can store subjects; the same is true for predicates and objects. 

Therefore, a relation can have at most one attribute for each position. 

 The last mapping that we need is denoted as τ and captures data types D of 

attributes A found in relations R. To avoid dependence on data types in a particular 

RDBMS, we can use generic data types, such as string, date, and double, defined in the 

XML Schema language. 

Definition 8 (Mapping τ) 

Given a set of relations R, a set of relational attributes A, and a set of XML Schema data 

types D, a mapping τ is a many-to-one mapping τ : R × A → D, such that given a relation 

R ∈ R and its attribute a ∈ A, τ(R, a) returns a data type d ∈ D. 

 These three mappings constitute a logical schema. 
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Definition 9 (Logical Schema) 

A logical schema LS is a tuple (lsid, γ, δ , τ), where lsid is a unique identifier of the 

schema, γ is a mapping as in Definition 6, δ is a mapping as in Definition 7, and τ is a 

mapping as in Definition 8. 

 The logical schema definition is very flexible, enabling encoding different types 

of relations supported in schema-oblivious, schema-aware, data-driven, and hybrid 

relational RDF stores. Moreover, γ and δ allow the design of new types of relations, 

resulting in a novel user-customized approach to schema design. In the following 

example, we show a logical schema that implements relations used by different 

approaches. 

Example 10 (Logical Schema) 

A database designer may specify the following logical schema that may be used for the 

sample RDF graph in Figure 1. 

lsid: 1        

          

γ: Triple → {(?s, ?p, ?o)}, 

  Name → {(?s, name, ?o)}, 

  Class%obj% → {(?s, type, ?o)}, 

  Phone → {(?s, cell, ?o), (?s, phone, ?o)}. 

          

δ: (Triple, s) → sub τ: (Triple, s) → xsd:string 

  (Triple, p) → pre   (Triple, p) → xsd:anyURI 

  (Triple, o) → obj   (Triple, o) → xsd:string 

  (Name, s) → sub   (Name, s) → xsd:anyURI 

  (Name, o) → obj   (Name, o) → xsd:string 

  (Class%obj%, i) → sub   (Class%obj%, i) → xsd:anyURI 

  (Phone, s) → sub   (Phone, s) → xsd:anyURI 

  (Phone, p) → pre   (Phone, p) → xsd:anyURI 

  (Phone, o) → obj   (Phone, o) → xsd:unsignedInt 
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 According to this schema, three relations with fixed names (Triple, Name, and 

Phone) and one data-driven relation Class%obj% are defined. Triple can store all 

possible RDF triples as specified by the triple pattern (?s, ?p, ?o) in three columns s, p, o 

that correspond to a subject, predicate, and object, and have data types xsd:string, 

xsd:anyURI, and xsd:string, respectively. Similarly, the structure of relations Name and 

Phone is defined as Name(s : xsd:anyURI, o : xsd:string) and Phone(s : xsd:anyURI, p : 

xsd:anyURI , o : xsd:unsignedInt). Name is intended to store subjects and objects of any 

RDF triple whose predicate is name, i.e., the triple matches triple pattern (?s, name, ?o). 

More interestingly, Phone is allowed to store any RDF triple whose predicate is cell or 

phone, i.e., the triple matches (?s, cell, ?o) or (?s, phone, ?o). Finally, the actual name of 

relation Class%obj% is derived from a triple itself, such that special variable %obj% is 

interpolated with the object value of a triple that matches triple pattern (?s, type, ?o). For 

example, if triple (B1, type, Person) is in the graph, its subject is to be stored by relation 

ClassPerson(i : xsd:anyURI). 

 The four relations are representative of four different approaches to schema 

design, namely schema-oblivious (Triple), schema-aware (Name), data-driven  

(Class%obj%), and user-driven (Phone), resulting in a flexible hybrid design. 

Physical Schema 

 The logical schema serves as a template that can be applied to generate relational 

database schemas in one or more RDBMS. Once a relational database schema is created 

in an RDBMS, we derive a new set of mappings that describe the concrete storage 

structure. This set of mappings is referred to as physical schema. 
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 In a physical schema, mappings γ and δ are initially inherited from the 

corresponding logical schema. If data-driven relations are used, these mappings may be 

augmented with new instances. Similarly, mapping τ is inherited from the corresponding 

logical schema with generic data types mapped to RDBMS-specific data types. τ may 

also evolve when data-driven relations are created. 

 Next, while mappings γ and δ are good means to capture what data can be stored 

in relations, they are not very straightforward to use for deciding how to insert new triples 

or match SPARQL triple patterns over relations. One step towards this goal is defining 

reverse mappings γ
−1

 : TP → R and δ
−1

 : P → R × A. The reverse mappings may not be 

easy to use, because γ
−1

 is defined on a finite set of triple patterns that may subsume other 

triple patterns and δ
−1

 returns a set for a given position. Therefore, to better support data 

mapping and query translation, we introduce mappings α and β, deriving them from γ
−1

 

and δ
−1

, respectively. 

Definition 11 (Mapping α) 

Given a set of triple patterns TP, a set of triples T , and a set of relations R, a mapping α is 

a many-to-many mapping α : TP ∪ T → R, if given a triple pattern tp ∈ TP (or triple t ∈ 

T), α(tp) (or α(t)) is a set of relations Rtp = γ
−1

(tp1) ∪ γ
−1

(tp2) ∪ · · · ∪ γ
−1

(tpn) ⊆ R, where 

γ
−1

 is defined on tp1, tp2, ..., tpn and each triple pattern tpi subsumes tp (or matches t).  

Therefore, each relation R ∈ α(tp) is used to store all the triples that match tp or each 

relation R ∈ α(t) is used to store triple t. 

 A function for computing α is shown in Figure 2. 
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Definition 12 (Mapping β) 

Given a set of relations R, a set of relational attributes A, and a set of positions P = {sub, 

pre, obj}, a mapping β is a many-to-one mapping β : R × P → A, if given a relation R ∈ R 

and a position pos ∈ P, β(R, pos) is a relational attribute a ∈ A that belongs to R and is 

used to store triple components at position pos. 

A function for computing β is shown in Figure 3. 

 

 

 

 

 

Figure 2: Function Compute-α 

Figure 3: Function Compute-β 



14 

 For example, given a triple pattern tp and mappings α and β, an RRDBMS can 

determine a set α(tp) of relations that store RDF data that may match tp, choose one 

relation R from this set, and identify relational attributes β(R, sub), β(R, pre), and  

β(R, obj) that should be checked to match tp’s subject pattern, predicate pattern, and 

object pattern, respectively. 

 Mappings γ, δ, τ, α, and β constitute a physical schema. 

Definition 13 (Physical Schema) 

A physical schema PS is a tuple (psid, lsid, rdbms, γ, δ, τ, α, β), where psid is a unique 

identifier of the physical schema, lsid is a unique identifier of the corresponding logical 

schema, rdbms is a reference to the corresponding RDBMS, γ is a mapping as in 

Definition 6, δ is a mapping as in Definition 7, τ is a mapping as in Definition 8 with the 

generic data types substituted by data types supported by rdbms, α is a mapping as in 

Definition 11, and β is a mapping as in Definition 12. 

 A physical schema is required to perform operations in an RRDBMS, such as 

mapping of RDF data to relational data, SPARQL-to-SQL query translation, and 

reconstruction of original RDF data from relational data. 

Example 14 (Physical Schema) 

We can derive a physical schema based on the mappings in Example 10. The first step is 

to select a specific RDBMS - we choose Oracle version 10g for this example and assume 

valid RDBMS credentials (username and password) are provided. First, we describe the 

usage of a physical schema for data mapping. In this situation we use a physical schema 

to insert triples into the appropriate relational tables. 
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lsid: 1        

          

γ: Triple → {(?s, ?p, ?o)}, 

  Name → {(?s, name, ?o)}, 

  Class%obj% → {(?s, type, ?o)}, 

  Phone → {(?s, cell, ?o), (?s, phone, ?o)}. 

          

δ: (Triple, s) → sub τ: (Triple, s) → VARCHAR2(256) 

  (Triple, p) → pre   (Triple, p) → VARCHAR2(256) 

  (Triple, o) → obj   (Triple, o) → VARCHAR2(256) 

  (Name, s) → sub   (Name, s) → VARCHAR2(256) 

  (Name, o) → obj   (Name, o) → VARCHAR2(256) 

  (Class%obj%, i) → sub   (Class%obj%, i) → VARCHAR2(256) 

  (Phone, s) → sub   (Phone, s) → VARCHAR2(256) 

  (Phone, p) → pre   (Phone, p) → VARCHAR2(256) 

  (Phone, o) → obj   (Phone, o) → VARCHAR2(256) 

 

 To store the following three triples, we use the algorithms listed in Figure 2 and 

Figure 3 to determine which tables and attributes will be used. 

α(B1, type, Person) = {Class%obj%, Triple}, 

β (Class%obj%, sub) = i, 

β (Class%obj%, pre) = undef, 

β (Class%obj%, obj) = undef, 

β(Triple, sub) = s, 

β(Triple, pre) = p, 

β(Triple, obj) = o. 

 

 For this triple (B1, type, Person), α returns a set containing two relations, 

Class%obj% and Triple. This means that the triple must be stored in both relations. The 

first one, Class%obj% represents a data-driven (or dynamic) relation. At runtime the 

name of the relation is derived using the object of the specified triple; in this case, it 

would be ClassPerson. It is possible that this relation may not exist at runtime. If 

necessary it can be created on-the-fly before the triple is inserted. The triple must also be 
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stored in the Triple relation. In this case the relation already exists because it was created 

during schema mapping. Once we know which tables will store the triple, β gives us the 

attributes that will be used to store the subject, predicate and object. Using β we know 

that attribute i should be used to store the subject in the relation named ClassPerson. 

When β returns undef, nothing is stored for the specified position. In this case it means 

that the predicate and object are not stored in the ClassPerson relation. Using β we know 

that attributes s, p, and o store the subject, predicate and object, respectively, in the 

relation named Triple. 

α(B1, name, paul) = {Name, Triple}, 

β(Name, sub) = s, 

β(Name, pre) = undef, 

β(Name, obj) = o, 

β(Triple, sub) = s, 

β(Triple, pre) = p, 

β(Triple, obj) = o. 

 

 For this triple (B1, name, paul), α returns a set containing two relations Name and 

Triple. Again, the triple must be stored in both relations. In this case, both relations 

already exist so the next step is to determine where to store the subject, predicate and 

object of this triple. For the Name relation, the subject is stored in attribute s and the 

object is stored in attribute o. The Triple relation is handled in exactly the same way as 

the previous triple. 

 

α(B1, phone, 111−1111) = {Phone, Triple}, 

β(Phone, sub) = s, 

β(Phone, pre) = p, 

β(Phone, obj) = o, 

β(Triple, sub) = s, 

β(Triple, pre) = p, 

β(Triple, obj) = o. 

 

 For this triple, (B1, phone, 111−1111), α returns a set containing two relations 
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Phone and Triple. For both of these relations, β returns s, p, and o to store the subject, 

predicate and object, respectively. 

 Next, we describe the usage of the physical schema for query translation. In this 

scenario, SPARQL queries provide graph patterns to be matched. Consider the following 

graph patterns: 

(?a ?b ?c) For this graph pattern, α returns a set containing one relation, 

Triple. This relation will be used to satisfy this query. 

 

(?a cell ?b) For this graph pattern, α returns a set containing two relations, 

Phone and Triple. In this scenario, we have the choice of which 

relation to execute the query against. Depending on the specifics 

of the query mapping algorithms, there may be different reasons 

for selecting one relation over another. In this example, the Phone 

relation likely has fewer tuples and may therefore provide faster 

query execution. 

 

(?a type Person) For this graph pattern, α returns a set containing one relation, 

Class%obj%. As described previously, the name of this relation is 

derived at runtime. In this case, it would be ClassPerson. During 

query translation, we must determine whether or not this relation 

has actually been realized. If it has, it can be queried and the 

results returned. If not, the query returns no results. From this 

example we can see that the usage of α during query translation is 

different from its use during data mapping. 
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Figure 4: Algorithm CreateLS 

 

Data Management Operations 

 There are four fundamental operations that an RRDBMS should support to store 

and query RDF data. The first operation is the specification of a logical schema, which 

can be done via a graphical user interface by a data architect. The architect is required to 

specify (1) relations and triple patterns that “describe” their purpose via mapping γ,      

(2) relational attributes and their relationship to triple pattern positions via mapping δ, 

and (3) data types of relational attributes via mapping τ. A high-level algorithm for this 

operation is shown in Figure 4. A logical schema produced by the CreateLS algorithm is 

stored by the RRDBMS and serves as a template for creating relational database 

schemas; the logical schema can be completely deleted if needed, but not altered. 
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 The second operation, called schema mapping, involves the creation of a physical 

schema based on a given logical schema and generation of a relational database schema 

in an RDBMS based on the physical schema. Through the schema mapping process, the 

same logical schema can be instantiated multiple times in the same or different RDBMSs. 

Each time, a distinct physical schema and database schema are created, where the former 

describes how the latter is used to store RDF data. The schema mapping algorithm, SM, is 

shown in Figure 5. It first creates the mappings that constitute a physical schema and then 

proceeds with the creation of relations in an RDBMS. Relation and attribute names are 

derived from the domains of γ and δ, respectively. Data-driven relations, whose names 

include special variables %sub%, %pre%, and %obj%, are skipped, since these variables 

can only be interpolated when RDF data is stored into the database. 

 The third essential operation in an RRDBMS is data mapping, which inserts RDF 

data into a relational database according to a given physical schema. The data mapping 

algorithm is presented in Figure 6. The algorithm relies on α to get the set of relations 

where a triple t must be inserted. This set is divided into two disjoint sets, RS1 and RS2, 

where the former contains relation names with special variables that need to be 

interpolated and the latter contains regular relations. Relations in RS1 are meant to be 

data-driven and may not yet exist in the database. Therefore, their schemas are created on 

the fly and the physical schema is updated accordingly. Newly created relations are also 

added to RS2 to be used later for data insertion. Once all relations in RS1 are processed, 

the algorithm inserts t into every relation in RS2. Mapping β is used to identify relational 

attributes, if defined, that can store subject t.s, predicate t.p, and object t.o. As a result of 
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this operation, both database schema and physical schema may be updated and the 

relations are populated with RDF triples that are mapped into relational tuples. 

  

 

 

 

 

 

 

 

 

 

The final operation that an RRDBMS needs is query translation, such that a SPARQL 

query can be translated into an equivalent SQL query, which can be further executed by 

an RDBMS. The translation is the most complex operation in an RRDBMS, since not 

only locating data in correct relations and attributes is involved, but also mapping of 

SPARQL constructs to relational operators is required. Our semantics preserving 

SPARQL-to-SQL translation, called trans, is presented in [8]. trans is parameterized with 

mappings α′ and β' (denoted as α and β in [8]) that have similar meaning as α and β 

defined in this paper. The first mapping is defined as a many-to-one mapping α′ : TP → R, 

which only differs from α in two aspects: (1) α’s domain includes a set of triples to 

support the data mapping operation (α : TP ∪ T → R) and (2) α is a many-to-many 

mapping. While the first difference does not affect the translation, the second one 

Figure 5: Algorithm SM 
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requires selecting one relation from a set returned by α. This, in fact, is an advantage of α 

over α′ that enables additional optimizations in an RRDBMS. In particular, a query 

optimizer may select to use a relation that (1) has the smallest cardinality, (2) is in cache, 

(3) is already chosen in another part of the same query, (4) has appropriate indexes, and 

so forth. Therefore, α′ can be straightforwardly derived from α: in the worst case, by 

randomly selecting a relation in the result of α. The second mapping is defined as a 

many-to-one mapping β′ : TP × P → A, which again is slightly different from a many-to-

one mapping  β : R × P → A. Since a triple pattern maps to exactly one relation by α′, for 

some tp ∈ TP and pos ∈ P, β′(tp, pos) = (α′(tp), pos). Thus, trans can support SPARQL-

to-SQL translation for physical schemas defined in our work. 

 The presented set of operations is rather minimal. Additional useful operations, 

such as deletion of a logical schema, physical schema, and database schema, RDF data 

update and deletion, can be supported by an RRDBMS. We also did not touch indexing of 

RDF data. These are beyond the scope of this document. 
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Figure 6: Algorithm DM 
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CHAPTER III 

 

 

SERVICE-ORIENTED ARCHITECTURE OF AN RRDBMS 

 

 

 S2ST is our implementation of an RRDBMS. It is built on a layered architecture 

that is commonly used for enterprise applications. Figure 7 shows the layers of the 

architecture. The Presentation Layer provides functionality for performing user tasks 

such as creating schemas, loading data, and executing queries. The Services Layer 

provides functionality needed by the Presentation Layer such as schema mapping, data 

mapping and query mapping. The Data Layer provides storage and query functionality 

needed by the Services Layer. One of the primary motivations for using a layered 

architecture is to provide support for web services. This architectural style is called a 

service-oriented architecture (SOA). The Services Layer of S2ST provides a functionality 

which may be accessed via a web services interface. The promise of SOA is that it 

enables the creation of applications by combining loosely coupled and interoperable 

services. Support for SOA is growing across a number of important application domains 

including those that have already adopted semantic web technology. We expect that 

support for semantic web and SOA technologies will be important requirements of future 

applications. 

 The S2ST architecture features a metadata model designed to resolve the conflict 

between the graph RDF data model and the relational data model. The metadata model 

defines RDF-to-Relational mappings, which capture how an RDF graph is stored in a 
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relational database. This makes it possible to develop generic algorithms for data and 

query mapping. All of this functionality can be exposed via web services to facilitate the 

integration of semantic web technology with existing applications. S2ST can support all 

schema mapping strategies used by existing systems and also future strategies as they 

become available. This flexibility is not available in any existing relational RDF 

database. Details of the metadata model are provided in Chapter 4. 

  

 

 

Figure 7: Service-Oriented Architecture of an RRDBMS 
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There are several architectural decisions that have strongly influenced the design and 

implementation of S2ST. The first decision has to do with the choice of software 

development platform. In the case of S2ST, the decision was made to build on the Java 

Enterprise Edition (Java EE) platform. This decision has many implications including 

availability of software components and tools as well as wide support within the 

academic and software development communities. The Java EE platform is a set of 

coordinated technologies for developing, deploying, and managing layered, server-centric 

applications. We have chosen to develop S2ST using an open-source web application 

framework (Grails) based on the Java EE platform and the Groovy programming 

language. Grails focus on coding by convention allowed us to quickly build the 

infrastructure for S2ST while eliminating most of the boilerplate code that is common in 

web applications. The Grails framework is based on the popular Model-View-Controller 

(MVC) architectural pattern. The MVC pattern separates domain logic (the Model) from 

input (the Controller) and presentation (the View). This facilitates independent 

development, testing and maintenance of each of these software components. The Groovy 

programming language is a dynamic language for the Java Virtual Machine (JVM). This 

means that applications built with Grails can be written in Groovy, Java or a mixture of 

both. S2ST includes code written in both Java and Groovy. All of the View and Controller 

code is written in Groovy. The performance-critical components of the Model are written 

in Java and the remaining components are written in Groovy. 

 The second architectural decision has to do with providing support for all of the 

most popular database management systems. Most of the existing systems that we studied 

provide support for only a limited number of them. Consider two of the best known 



26 

existing systems, Sesame and Jena. Sesame currently supports only 4 databases 

(PostgreSQL, MySQL, Microsoft SQL Server and Oracle). If your organization wants to 

use DB2, Sesame is not an option. Jena, which supports more databases than most 

existing systems, currently supports Oracle, Microsoft SQL Server, DB2, PostgreSQL, 

and MySQL. If your organization wants to use Sybase Adaptive Server, Jena is not an 

option. S2ST avoids this problem by taking advantage of an Object Relational Mapping 

framework known as Hibernate. We avoid writing vendor-specific SQL by relying on 

Hibernate to generate all DDL statements. We do anticipate the development of some 

vendor-specific query optimizations in the future. Even without these optimizations, 

S2ST can execute queries on all the popular databases by generating ANSI-compliant 

SELECT statements. 
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CHAPTER IV 

 

 

DESIGN AND IMPLEMENTATION OF S2ST 

 

Schema Mapping Services 

 As mentioned in Chapter 3, the architecture of S2ST is based on a unique 

metadata model. This model is what separates S2ST from existing systems. Figure 8 is a 

UML class diagram of the S2ST metadata model. The model is populated during schema 

mapping. Chapter 5 explains the different strategies employed by existing systems. It is 

clear that there is no ‘one size fits all’ schema mapping strategy. Which strategy should be 

used depends on a number of factors including the size and shape of the ontology, the 

amount of data being stored and the types of queries that will be executed. For the 

purpose of this chapter we refer to the four categories of schema mapping strategies listed 

in Chapter 5: schema oblivious, schema-aware, data-driven and hybrid. The first step in 

schema mapping is the creation of a Logical Schema, which is the central object in the 

metadata model. 

 During schema mapping, one or more Relations are created which have a set of 

Attributes and associated Triple Patterns. A Relation is a logical representation of a table 

which will be realized in a specific RDBMS. An Attribute is a logical representation of a 

column which will be realized in a specific table. As mentioned previously, RDF is based 

on subject-predicate-object expressions, called triples. Triple Patterns are specialized 

triples whose subject, predicate and object expressions can be used as variables. Triple 
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Patterns are used in SPARQL queries to specify the matching of triples. It is worth 

mentioning that there is a many-to-many relationship between Triple Patterns and 

Relations in the S2ST metadata model. This provides significant flexibility in specifying 

which triples are stored in particular Relations. 

 Once a Logical Schema has been created, one or more associated Physical 

Schemas can be created. A Physical Schema represents an instance of a Logical Schema 

on a specific database management system (e.g. Oracle 10g). S2ST creates an actual 

relational schema during the creation of a Physical Schema. The relational schema 

created in the target database contains a subset of the S2ST system catalog as well as 

tables for storing triples. The actual schema created depends on the details provided by 

the user during creation of the Logical Schema. For example, if the user chooses a 

Schema-Oblivious schema mapping strategy, then only a single table is created for 

storing all triples. If the user chooses a Schema-Aware schema mapping strategy, then 

tables would be created for each Class and Property found in the ontology specified 

during creation of the Logical Schema. S2ST even provides the user with the ability to 

exclude any of the Classes or Properties found in the specified ontology. This means that 

the user controls not only what data gets stored but also how it is stored. No other system 

provides this level of customization. Namespaces represent the prefixes found by S2ST 

when parsing the ontology specified during creation of the Logical Schema. They are 

used during schema and data mapping to disambiguate the names of classes and 

properties. Transactions represent data mapping operations performed on a specific 

Physical Schema. This allows S2ST to track the source of triples being stored and also 

gives us the option of implementing a delete feature at some point in the future. 
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 Logical Schema, Relation, Attribute, Triple Pattern, Namespace, Physical Schema 

and Transaction are domain objects implemented as Java classes. Instances of these 

classes are persisted using Hibernate, which requires mapping metadata. Hibernate 

supports two ways of providing mapping metadata: annotations or XML. We chose to use 

XML. There is a separate XML mapping file for each domain class. Hibernate uses the 

mapping metadata to generate DDL statements needed to create the relational tables for 

storing instances of domain classes. Hibernate is able to generate platform-specific DDL 

statements for the target database management system. 

 The code for schema mapping consists of 6 views, 1 controller class and 1 service 

class. The schema mapping views correspond to specific use cases: View All Logical 

Schemas, View Logical Schema, Create Logical Schema, Create Physical Schema, Load 

Physical Schema, and Query Physical Schema. These views are implemented using 

Groovy Server Pages (GSP), which is the view technology bundled with the Grails 

framework. The schema mapping controller class, Schema Controller, is implemented as 

a Grails controller, which is written in Groovy. A Grails controller handles all HTTP 

requests from clients for a specific web context (URL pattern). It is common for code in a 

Grails controller to invoke methods in one or more Grails service classes. 

 The schema mapping service class, SchemaMappingService, is implemented as a 

Grails service and is also written in Groovy. Service classes encapsulate operations that 

deal with domain objects and are often transactional.  
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Data Mapping Services 

 The data mapping services provided by S2ST allow users to load data into 

physical schemas created by S2ST. The purpose of data mapping is to shred triples in the 

source datastream and insert them into a relational database. Figure 9 below shows the 

architecture of our data mapping service. The shredding of triples is done by the Parser 

component. Most RDF database systems support multiple input formats including 

RDF/XML, N-Triple, N3, and Turtle. Rather than writing our own parser, we made the 

decision to use the ARP parser which is part of the Jena Semantic Web Framework. The 

Mapper component is responsible for shredding the triples produced by the Parser and 

feeding them as tuples to Loader components. A Loader component simply inserts the 

tuples into a specific relational table. 

 

Figure 8: S2ST Metadata Model 
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 Any schema mapping strategy based on fixed relations (schema-oblivious, 

schema-aware and possibly hybrid) results in static data loaders being used to insert data 

into the appropriate tables. As mentioned previously, there are schema mapping strategies 

(data-driven and possibly hybrid) that allow tables to be created on-the-fly based on 

patterns found in the source data. These strategies result in dynamic data loaders being 

used to insert data into newly created tables. 

 Figure 10 below is a UML sequence diagram that shows the interaction between 

the classes involved in data mapping. All that is required to use the ARP parser is a class 

which implements the StatementHandler interface (defined by Jena library). This 

interface contains only two overloaded methods which support the shredding of triples 

Figure 9: Data Mapping Architecture of S2ST 
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produced by the parser. Our implementation of the StatementHandler interface is the 

JenaDataMapper class. When an instance of DataMapper is created, a hash table instance 

is populated with the names of relations as keys and DataLoader instances as values. In 

other words, there is an instance of DataLoader for each table in the physical schema. The 

DataMapper interface, which is also implemented by the JenaDataMapper class, contains 

three methods which are needed to perform data mapping operations. The primary 

method in this interface is mapTriple, which controls the data mapping process. 

 

 

 The DataLoader interface contains three methods needed to perform data loading 

operations. The primary method in this interface is loadTriple. S2ST currently supports 

only one approach for inserting data into a relational database - JDBC batch loading. 

Another simpler, more generic approach is to produce a flat file containing SQL 

 

Figure 10: Data Mapping Sequence Diagram 
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statements (DML and possibly DDL) needed to insert the data. Unfortunately, this 

approach results in poor performance for data mapping operations on large datasets. 

Another approach is to use vendor-specific bulk loading facilities to insert the data. Bulk 

loading usually results in the best performance for data mapping operations on large 

datasets. Unfortunately, it requires vendor-specific input formats and programming 

interfaces. Our long term goal is to support all three of these approaches. We decided to 

implement JDBC batch loading first because it provides reasonable performance and is 

straightforward to implement for all popular database management systems. 

 One of the most challenging aspects of implementing data loading functionality is 

determining what data from each triple to persist. The schema mapping strategy 

prescribes what data is stored in each relational table in the target database. For example, 

if the table represents a class relation then only the subject is persisted. If the table 

represents a property relation then only the subject and object is persisted. S2ST can 

persist any combination of the subject, predicate and object in each table. It is common 

for Java applications to use the JDBC PreparedStatement to insert large numbers of rows 

into a relational table. Creating an instance of PreparedStatement requires a 

parameterized SQL statement. Once the application is ready to insert data, the parameters 

are initialized with appropriate values and then the addBatch method is called to add this 

SQL statement to a buffer for later execution. In the case of a data loader, the table name 

in the SQL INSERT statement depends on the triple being loaded. S2ST can use Java 

Unified Expression Language to dynamically generate table names based on patterns 

specified during schema creation and runtime values of triple properties. 
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Query Mapping Services 

 The W3C standard query language for RDF is SPARQL. To allow users to submit 

SPARQL queries and have them executed against a relational database requires 

translation to SQL, the standard query language for relational database management 

systems. S2ST is the first relational RDF database management system to feature 

semantics-preserving SPARQL-to-SQL query translation. This means that S2ST can 

guarantee the correctness of translated queries. 

 The first step in query translation is parsing of the user specified SPARQL query. 

Rather that writing our own SPARQL parser, we made the decision to use the one 

included in the Sesame RDF Framework. The Sesame SPARQL parser generates a parse 

tree containing all of the terms in the specified query. Like many parsers, the Sesame 

SPARQL parser relies on the Visitor software pattern. This pattern provides a way to 

separate an algorithm from the data structure it depends on. Sesame defines an interface, 

QueryModelVisitor, which contains more than 50 overloaded methods that must be 

implemented. Each of the overloaded methods is intended to support a specific type of 

node that may be encountered in the generated parse tree. Our QueryTranslator class 

contains an inner class which implements the QueryModelVisitor interface. Figure 11 is a 

UML sequence diagram that shows the interaction between the classes involved in query 

translation. Once the parse tree has been generated, an instance of this inner class uses 

postorder traversal to visit each node in the parse tree. As each node is visited, an instance 

of the TranslationObject class is created and pushed onto a stack. 

 The TranslationObject class is a simple class which contains an SQL query and a 

set of terms referenced in the query. The QueryTranslator class uses an instance of the 
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TranslationObjectBuilder class to perform most of the actual query translation. Once 

child nodes have pushed their results onto the stack, a parent node pops the 

TranslationObject instances created by the child nodes, creates another TranslationObject 

and pushes it onto the stack. This continues up the parse tree until the root node is 

reached. The root node is handled like all other parent nodes and it creates the final 

TranslationObject. S2ST currently supports a subset of the full SPARQL syntax. We 

expect to support the full SPARQL syntax at some point in the future. 

 

 The initial implementation of query translation in S2ST does not generate the 

simplest possible SQL. A. Chebotko et al. provide a number of simplifications that can be 

used to generate simpler and more efficient SQL queries. We expect to implement these 

simplifications in S2ST in the near future. Once a query has been translated, it must be 

executed against the relational database associated with the specified physical schema. 

This is done using a JDBC Statement object. Once the query is executed by the RDBMS, 

 

Figure 11: Query Mapping Sequence Diagram 
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the results are returned as a JDBC ResultSet object. The results are then encoded in XML 

to facilitate easy transformation into any of several different formats including CSV, 

HTML and PDF. 
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CHAPTER V 

 

 

RELATED WORK 

 

 

 There has been considerable research done in the area of Semantic Web data. In 

this chapter, we review the research that is most closely related to the work we have done 

here. In recent years, several RDBMS-based RDF stores (see [4] for a survey) have been 

developed to support large-scale Semantic Web applications. The conflict between the 

graph RDF [22,23] data model and the target relational data model of such systems 

requires providing a way to deal with various mappings between the two data models, 

such as schema mapping, data mapping, and query mapping (a.k.a. query translation). 

Schema mapping is used to generate a relational database schema that can store RDF 

data. Schema mapping strategies employed by existing RDF stores fall into four 

categories: 

Schema-oblivious (also called generic or vertical): A single relation, e.g., 

Triple(s,p,o), is used to store RDF triples, such that attribute s stores the subject of 

a triple, p stores its predicate, and o stores its object. Schema-oblivious RDF 

stores include Jena [26, 27], Sesame [5], 3store [12,13], KAON [21], RStar [14], 

and OpenLink Virtuoso [10]. This approach has no concerns of RDF schema or 

ontology evolution, since it employs a generic database representation. 
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Schema-aware (also called specific or binary): This approach usually employs an 

RDF schema or ontology to generate so called property relations and class 

relations. A property relation, e.g., Property(s, o), is created for each property in 

an ontology and stores subjects s and objects o related by this property. A class 

relation, e.g., Class(i),  is created for each class in an ontology and stores 

instances i of this class. An extension to the idea of property relations is a 

clustered property relation [25], e.g., Clustered(s, o1, o2, ... , on), which stores 

subjects s and objects o1, o2, ..., on related by n distinct properties (e.g., < s p1 o1 

>, < s p2 o2 >, etc.). In [7], along with property and class relations, class-subject 

and class-object relations are introduced. A class-subject relation, e.g., 

ClassSubject(i, p, o) stores triples whose subjects are instances of a particular 

class in an ontology. Similarly, a class-object relation, e.g., ClassObject(s, p, i), 

stores triples whose objects are instances of a particular class. Such relations are 

useful for queries that retrieve all information about an instance (subject or object) 

of a particular class. Representatives of schema-aware RDF stores are Jena [25–

27], DLDB [16], RDFSuite [3,20], DBOWL [15], PARKA [18], and RDFPROV 

[6,7]. Schema evolution for this approach is quite straightforward: the addition or 

deletion of a class/property in an ontology requires the addition or deletion of a 

relation (or relational tuples) in the database. More information on ontology 

evolution can be found in [19] and [11]. The schema-aware approach is in general 

yields better query performance than the schema oblivious approach as has been 

shown in several experimental studies [2, 3, 7, 20]. In addition, the use of a 
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column-oriented DBMS, in conjunction with vertical partitioning of relations, has 

shown further improvements in query performance [1]. 

 

Data-driven: This approach uses RDF data to generate database schema. For 

example, in [9], a database schema is generated based on patterns found in RDF 

data using data mining techniques. RDF store RDFBroker [17] implements 

signature relations, which are conceptually similar to clustered property relations, 

but are generated based on RDF data rather than RDF Schema information. In 

general, relations generated by the schema-aware approach can also be supported 

by the data-driven approach (e.g., property relations in Sesame [5] are created 

when their instances are first seen in an RDF document during data mapping). 

RDFBroker [17] reports improved in-memory query performance over Sesame 

and Jena for some test queries. Schema evolution for the data-driven approach, if 

supported, might be expensive. 

 

Hybrid: This approach uses the mix of features of the previous approaches. An 

example of the hybrid database schema (resulted from schema-oblivious and 

schema-aware approaches) is presented in [20], where a schema-oblivious 

database representation, e.g., Triple(s, p, o), is partitioned into multiple relations 

based on the data type of object o, and a binary relation, e.g., Class(i, c), is 

introduced to store instances i of classes c. [20] reports comparable query 

performance of the hybrid and schema-aware approaches. 

 

 Data mapping is used to shred RDF triples into relational tuples and insert them 

into the database. Data mapping algorithms employed by existing RDF stores are usually 
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fairly straightforward, such that RDF triples are inserted into a single relation as in the 

schema-oblivious approach, or into one or multiple relations as in the other approaches. 

Several data mapping strategies and algorithms are presented in [7]. 

 Query mapping is used to translate a SPARQL query into an equivalent SQL 

query, which is evaluated by the relational engine and the result is returned as a SPARQL 

query solution. This is one of the most difficult mappings in RDBMS-based RDF stores. 

 



41 

CHAPTER VI 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 In this paper, we established the theoretical foundations of a Relational RDF 

Database Management System (RRDBMS), we described an SOA architecture for 

exposing the services provided by an RRDBMS, and we detailed the implementation of 

S2ST, the first and only RRDBMS that supports multiple relational database management 

systems, user-customizable schema mappings, schema-independent data mapping, and 

semantics-preserving query translation. 

 We plan to extend our research in a number of areas including: 

� Enhancements to our schema generation user interface to provide 

recommendations for creating optimal schemas based on ontology and 

amount of data being stored/queried 

� Simplifications to improve the performance of generated SQL queries 

� Access control that provides fine-grained security for all data and user 

accessible objects 

� RSS feeds for tracking specific database activity 

� Virtual machine images containing a fully configured S2ST system 
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