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Background
 Sensor Development Motivation
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•

 

Lack of Capability
– TPS and hot structures are utilizing advanced materials that operate at 

temperatures that exceed our ability to measure structural performance 
– Robust strain sensors that operate accurately and reliably beyond 1800°F are 

needed but do not exist

•

 

Implication
– Hinders ability to validate analysis and modeling techniques
– Hinders ability to optimization structural designs



Hypersonic Educational Initiative 4Sect. 10.3

Background
 Strain Sensor Maturation
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Provide strain and temperature data for validating finite 
element models and thermal-structural analyses

•

 

Select sensor most suited to acquire needed information
•

 

Develop sensor attachment techniques for structural material
•

 

Validate strain and temperature measurements

Objective
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Application and Sensor 
Select sensor most suited to acquire 
needed information

•
 

Measurement required
•

 
Substrate material

•
 

Maximum test temperature
•

 
Heating rate

•
 

Static and / or dynamic environment
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•

 

Cavity Length (LC): Distance (microns) separating the two reflecting 
fiber surfaces

•

 

Gage Length (LG): Sensitivity, distance (millimeters) separating the two 
points that attach the optical fiber to the substrate

Strain =  ΔLC

 

/ LG

 

(initial)

Apparent Strain (ξapp): = (αsub

 

-

 

αfiber)*ΔT

LC

Reflect 1
Reflect 2 840nm, 50μW

SM gold coated fiber 
125μm dia, 6μm core 
840nm tuned

Silica micro-capillary:
OD = 285μm 
ID = 130μm 

Ceramic
Attach

LG

Extrinsic Fabry-Perot Interferometer (EFPI)

Application and Sensor 
Static Strain Measurements



Hypersonic Educational Initiative 8Sect. 10.3

Application and Sensor 
Static Strain Measurements
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Quarter-Bridge Strain Gage

 
Typical Sensor Traits

Pro’s
•

 

Sturdy / rugged thermal sprayed installation and 
spot-welded leadwire stakedown

•

 

Available high sample rate DAS, usually AC 
coupled to negate large ξapp

Con’s
•

 

Large magnitude ξapp

 

primarily due to wire TCR, 
slope rotates cycle-to-cycle

•

 

Sensitivity (GF): Function of temperature

ξapp

 

= [TCRgage

 

/ GFset

 

+ (αsub

 

-

 

αgage)] * (ΔT)

Application and Sensor 
Dynamic Strain Measurements

-15000

-12000

-9000

-6000

-3000

0

0 500 1000 1500
Temp (F)

S
tr

ai
n 

(
)

1st Cycle
2nd Cycle
3rd Cycle

-14000

-13000

-12000

-11000

-10000

800 1000 1200 1400 1600

1st Cycle
2nd Cycle
3rd Cycle

PTZ

Rotation
Direction

Heat / Cool Rate:
1 °F / sec

-15000

-12000

-9000

-6000

-3000

0

0 500 1000 1500
Temp (F)

S
tr

ai
n 

(
)

1st Cycle
2nd Cycle
3rd Cycle

-14000

-13000

-12000

-11000

-10000

800 1000 1200 1400 1600

1st Cycle
2nd Cycle
3rd Cycle

PTZ

Rotation
Direction

Heat / Cool Rate:
1 °F / sec

Electrical Resistive Strain Gage (SG)
R1

R3 R2

R4 

+ EX

- S+ S 

- EX

Red

Black

WhiteGreen

Wheatstone Bridge (ΔR/R)*GF=ξ



Hypersonic Educational Initiative 10Sect. 10.3

Application and Sensor 
Dynamic Strain Measurement Examples

C-17 Engine Testing
•

 

Test temperatures above 1100°F
•

 

Engine intentionally unbalanced creating 
large peak-to-peak vibrations

X-33 Sonic Fatigue Testing
•

 

Dynamic loads as high as -158db
•

 

Test temperatures above 1500°F
•

 

High transient heating rates 
producing large thermal stresses
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Develop sensor attachment techniques for 
structural material

•

 

Derive surface prep and optimal plasma spray 
parameters for applicable substrate

–

 

powder type, power level, traverse rate, and spraying 
distance

•

 

Optimize / select cement that best fits application
•

 

Improve methods of handling and protecting fragile 
sensors during harsh installation processes

Attachment Techniques
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Thermal sprayed attachments are preferred even though cements 
are simpler to apply

•

 

Cements are often corrosive to TC or strain gage alloys
–

 

Si / Pt, NaF

 

/ Fe-Cr-Al alloys, alkali silicate / Cr

Positive lead of
K-Type TC (NiCr)

Attachment Techniques
 Thermal Spray vs

 

Cement

Post-Test: One cycle to 2550°F 

•

 

Cements are more prone to bond failure due to shrinkage and cracking 
caused when binders dissipate
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Arc-plasma sprayed base coat
•

 

Metallic Substrates: Used to transition high expansion substrate

 

metal with low 
expansion sensor attachment material (Al2

 

O3

 

)
•

 

CMC Substrates (inert testing): High melting-point ductile transitional metals (i.e. 
Ta, TiO2

 

, & Mo) more conducive for attachment to smooth surfaces like SiC

Rokide flame-sprayed sensor attachment
•

 

Applies a less dense form of alumina

 

than plasma spraying
•

 

Electrically insulates (encapsulate) wire resistive strain gages

Collaborative work has been done through 
grants with Dr. Richard Knight, Drexel University

Attachment Techniques
 Thermal Spray Processes
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Thermal Spray Room
•

 

80KW Plasma System
•

 

Rokide Flame-Spray System
•

 

Powder Spray System
•

 

Grit-Blast Cabinet
•

 

Micro-Blast System
•

 

Water Curtain Spray Booth

Attachment Techniques
 Thermal Spray Equipment



Hypersonic Educational Initiative 15Sect. 10.3

8.5mm

Attachment Techniques 
Fiber Optic EFPI Installation

Fabricate sensor under 
microscope

Flame-spray sensor attachment

Transfer to thermal 
sprayed base coat 
using carrier tape

0.35”
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Attachment Techniques
 Fiber Optic EFPI Installation

1.  Plasma Spray 
Basecoat (2-mil)

2.  Rokide Flame-Spray 
Intermediate Layer (1-mil)

3.  Set EFPI Sensor in 
Place Using Carrier Tape

4.  Rokide Flame-Spray 
Attachment Layer 
(minimal coverage)
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Attachment Techniques 
Resistive Wire Strain Gage Installation

Place SG on thermal 
sprayed basecoats 

via carrier tape

Apply flame-sprayed 
tack and cover coats

Spot weld three-

 
conductor leadwire 
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Attachment Techniques
 Large-Scale Structures
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Attachment Techniques
 Thermocouple Junction

Rapid-Heat Furnace
•

 

Air or inert (2600°F max)
•

 

8-in3

 

inner furnace with 
Molydisilicide

 

elements

Evaluate high-temp cement performance Thermal spray attachments must be as thin as possible 
to reduce sheering due to expansion differentials

Bond 
Failure
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Improved Leadwire Stakedown
•

 

Thermal sprayed base coats
•

 

All Coverguard

 

removed, only S-13 
cement was used for TC attachment

•

 

No cement applied directly on overbraid

•

 

Leadwires staked with tie-down method 
developed during National Aerospace 
Plane program

•

 

Reshaped service loops to lay on 
basecoat surface

CrossCross--SectionSection

Cement
TC Leadwire

Nextel Wrap

Top ViewTop View

Attachment Techniques
 Thermocouple Leadwire

Past Method
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Validate strain and temperature 
measurements

•

 

Base-line / characterize high-temperature strain sensors on 
Inconel specimens 

–

 

Known material spec’s isolate substrate from inherent sensor 
traits prior to testing on more complex composites

•

 

Evaluate / characterize sensitivity (GF) of strain sensors on 
ceramic composite substrates using laboratory combined 
thermal / mechanical load fixture

•

 

Generate apparent strain curves for corrections 
•

 

Test and verify TC measurements in laboratory furnace 
under fast transient and steady-state conditions

Evaluation / Characterization
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Clamping Beam

Loading Mandrels
Side A
Loading

Side B
Loading

13 in.

Clamping Beam

Loading Mandrels
Side A
Loading

Side B
Loading

13 in.

Clamping Beam

Loading Mandrels
Side A
Loading

Side B
Loading

13 in.

Evaluation / Characterization
 Combined Thermal / Mechanical Loading (Obsolete)

Loading Mandrels

LVDT’s
Extensions

Clamping
Beam

Load
Bar

TOP VIEW

Thermal / Mechanical Cantilever Beam Testing of EFPI’s
•

 

Excellent correlation with SG to 550°F (3%)
•

 

Very little change to 1200°F
•

 

Slight drop in output slope above 1200°F
•

 

Maximum gap readability uncertain at upper range 
temperatures on high expansion material
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          Standoff Correction Factor
KSo = c/(c+So) = 0.189 / 0.189 + 0.0055 = 0.972
       where:
    c = Distance from Neutral axis
  So = Distance from centerline of fiber (in tube)
           to substrate 

FS2000 Settings
Extended Range: ON
Gap Limit: OFF
Sample Interval: 100ms
Analog Out: On (1:0.1)

EFPI Combined Loading on IN625

Sect. 10.3
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Furnace / cantilever beam loading 
system for sensitivity testing 

•

 

Air or inert (3000°F max)
•

 

12-in3

 

inner furnace with Molydisilicide

 
elements

•

 

Micrometer / mandrel side loading
•

 

LVDT displacement measurements
•

 

POCO Graphite hardware for inert 
environment testing of ceramic composites

•

 

IN625 hardware for metallic testing in air
•

 

Sapphire viewing windows

Loading
Mandrel

LVDT

Clamping 
Beam

Evaluation / Characterization
 Combined Thermal / Mechanical Loading (Current)

Constant Strain Load Bar
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Evaluation / Characterization
 Dilatometer Testing

Sensor Characterization

 
Air or inert (3000°F max)

•

 

Evaluate bond integrity
•

 

Generate ξapp

 

correction curves
•

 

Evaluate sensitivity and accuracy
•

 

Evaluate sensor-to-sensor scatter, 
repeatability, hysteresis, and drift

Modified Dilatometer 
System

4 EFPI’s on C-C
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Evaluation / Characterization
 EFPI Apparent Strain
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ξapp

 

Correction: The removal of inherent sensor traits and substrate expansion 
from indicated strain to acquire true applied strains or thermal

 

stresses

 
ξtrue

 

= ξindicated

 

–

 

ξapp, where ξapp

 

= (αsub

 

-

 

αfiber) * ΔT
•

 

Inconel (LH chart): Expansion ratio between IN and Si so large no sensor correction required 
(output primarily substrate expansion, CTE * ΔT)

•

 

CMC (RH chart): Small CTE ratio between C-SiC and Si requires a correction for the growth in 
fiber (lessening cavity gap) verses the expansion of the substrate

•

 

Plots shows how well actual ξapp

 

curves followed theoretical
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K-Type 2200°F –
Thermal Spray & Cement

K-Type 2200°F –
Cement

TC is isolated from high-strength 
(but corrosive) SiC cement by a 

benign (phosphate based) cement

Evaluation / Characterization
 Current Ceramic Composite Temperature Measurements

S-Type 2500°F -
Thermal Spray

Pt is flattened to reduce Rokide 
flame-spray thickness
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•

 

Test single-mode silica EFPI’s in combined thermal / mechanical 
load fixture on C-C and C-SiC substrates

•

 

Develop Sapphire strain sensor (multi-mode)
–

 

Keep precise parallel gap faces aligned throughout process 
•

 

Develop precision transfer method (i.e. temporary alignment fixture)

–

 

Test in laboratory thermal / mechanical loads fixture to > 2500°F
•

 

Test and evaluate high-temperature fiber Bragg Gratings for use as 
strain and temperature sensors

•

 

Develop accelerometer attachment method for high-temp GVT 
•

 

Attach and evaluate high-temperature heat flux gage
•

 

Evaluate  weldable

 

(shim) EFPI strain sensor on Inconel
•

 

Continue to improve reliable / rugged TC attachments to ceramic 
composites, including flight application

Future Testing
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