286 research outputs found

    ΠžΡ†Π΅Π½ΠΊΠ° ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ сСанса Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π½Π° этапС ΠΏΡ€Π΅Π΄Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ

    Get PDF
    The treatment planning process includes a review of the radiation treatment plan which leads to a decision on the patientΚΌs treatment technique. The scope of this study was to create a mathematical model for calculating of a radiation therapy session duration during the pre-radiation planning stage.For dosimetric planning of radiation treatment the authors provided a formula and an algorithm for determining of a patientΚΌs irradiation session duration. Radiation therapy session parameters such as radiation technique, number of monitor units, characteristics of radiotherapy equipment, number of radiation fields, radiation field parameters (angles of rotation of the radiotherapy coach, collimator, gantry), presenceβ€Š/β€Šabsence of dose-modulating devices, dose rate, and duration of patient position verification procedures have all been taken into account during the development of software. The developed application explains how to define typical timing characteristics for various items as well as how to select a template from a built-in drop-down menu. If the dosimetric plan does not match for one of the templates, the program provides a space for defining of all parameters manually.The anticipated deviations of the true indicators from the expected indicators of the duration of the radiation therapy session were assessed. A total of 300 cases have been completely measured, with 100 cases studied for each irradiation technique (IMRT, VMAT, 3D). The maximum detection confidence value for the 3DCRT irradiation technique is 2.3 %, while the deviation for the IMRT and VMAT irradiation techniques is less than 1 %. The magnitude and degree of the deviation of the measured value from the expected one for a variety of characteristics and features have been revealed to depend on the actions of the personnel.The program developed allows medical physicists to analyze the timing parameters of the specified dosimetric planning methodologies directly on the treatment planning workstation. Evaluation of the duration of a radiation therapy session during the treatment planning stage, selection of various radiation treatment modalities, and consideration of the characteristics of the radiation session in each clinical case are available for analysis and further justified action. Анализ ΠΏΠ»Π°Π½Π° Π»ΡƒΡ‡Π΅Π²ΠΎΠ³ΠΎ лСчСния являСтся Π½Π΅ΠΎΡ‚ΡŠΠ΅ΠΌΠ»Π΅ΠΌΠΎΠΉ Ρ‡Π°ΡΡ‚ΡŒΡŽ процСсса ΠΏΡ€Π΅Π΄Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ принимаСтся Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅ лСчСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлась Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ опрСдСлСния ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ сСанса Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π½Π° этапС ΠΏΡ€Π΅Π΄Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ.Авторами ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ расчёта ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ сСанса облучСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° Π½Π° этапС дозимСтричСского планирования Π»ΡƒΡ‡Π΅Π²ΠΎΠ³ΠΎ лСчСния. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ΠΎ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ΅ обСспСчСниС расчёта ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ сСанса облучСния, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰Π΅Π΅ значСния всСх ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² сСанса Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ: ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΡƒ облучСния, количСство ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€Π½Ρ‹Ρ… Π΅Π΄ΠΈΠ½ΠΈΡ†, характСристики радиотСрапСвтичСского оборудования, количСство Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ, ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΏΠΎΠ»Π΅ΠΉ облучСния (ΡƒΠ³Π»Ρ‹ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π° радиотСрапСвтичСского стола, ΠΊΠΎΠ»Π»ΠΈΠΌΠ°Ρ‚ΠΎΡ€Π°, ΡˆΡ‚Π°Ρ‚ΠΈΠ²Π° Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π°), Π½Π°Π»ΠΈΡ‡ΠΈΠ΅/ отсутствиС Π΄ΠΎΠ·ΠΎΠΌΠΎΠ΄ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… устройств, ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ Π΄ΠΎΠ·Ρ‹, ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ полоТСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°. Π’ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ прСдусмотрСна установка стандартных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΠ»Π°Π½Π° облучСния для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΉ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ ΠΏΡƒΡ‚Ρ‘ΠΌ Π²Ρ‹Π±ΠΎΡ€Π° ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ шаблона ΠΈΠ· Π²Ρ‹ΠΏΠ°Π΄Π°ΡŽΡ‰Π΅Π³ΠΎ списка. Π’ случаС, Ссли дозимСтричСский ΠΏΠ»Π°Π½ Π½Π΅ соотвСтствуСт Π½ΠΈ ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΈΠ· шаблонов, Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ прСдусмотрСн Π²Π²ΠΎΠ΄ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΠ»Π°Π½Π° Π²Ρ€ΡƒΡ‡Π½ΡƒΡŽ.ΠŸΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ, рассчитываСмых Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΎΠΉ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ сСанса Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΎΡ‚ истинных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. Π˜Π·ΠΌΠ΅Ρ€Π΅Π½ΠΈΡ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ для 300 случаСв: исслСдованы ΠΏΠΎ 100 случаСв для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ облучСния (IMRT, VMAT, 3D). МаксимальноС выявлСнноС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ рассчитанного значСния ΠΎΡ‚ истинного составило 2,3 % для ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ облучСния 3DCRT, для ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ облучСния IMRT ΠΈ VMAT ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ составило ΠΌΠ΅Π½Π΅Π΅ 1 %. ВыявлСно, Ρ‡Ρ‚ΠΎ с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ количСства ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€, Π½Π°ΠΏΡ€ΡΠΌΡƒΡŽ связанных с дСйствиями пСрсонала, увСличиваСтся ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° отклонСния рассчитанного значСния с ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Π½Ρ‹ΠΌ.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ΅ обСспСчСниС позволяСт ΠΎΡ†Π΅Π½ΠΈΠ²Π°Ρ‚ΡŒ Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² дозимСтричСского планирования Π½Π° Ρ€Π°Π±ΠΎΡ‡Π΅ΠΌ мСстС мСдицинского Ρ„ΠΈΠ·ΠΈΠΊΠ°. ΠžΡ†Π΅Π½ΠΊΠ° Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ сСанса Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π½Π° этапС ΠΏΡ€Π΅Π΄Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ способствуСт Π²Ρ‹Π±ΠΎΡ€Ρƒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Π»ΡƒΡ‡Π΅Π²ΠΎΠ³ΠΎ лСчСния с ΡƒΡ‡Ρ‘Ρ‚ΠΎΠΌ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² сСанса облучСния Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΌ клиничСском случаС.

    Advances in Engineering and Application of Optogenetic Indicators for Neuroscience

    Get PDF
    Our ability to investigate the brain is limited by available technologies that can record biological processes in vivo with suitable spatiotemporal resolution. Advances in optogenetics now enable optical recording and perturbation of central physiological processes within the intact brains of model organisms. By monitoring key signaling molecules noninvasively, we can better appreciate how information is processed and integrated within intact circuits. In this review, we describe recent efforts engineering genetically-encoded fluorescence indicators to monitor neuronal activity. We summarize recent advances of sensors for calcium, potassium, voltage, and select neurotransmitters, focusing on their molecular design, properties, and current limitations. We also highlight impressive applications of these sensors in neuroscience research. We adopt the view that advances in sensor engineering will yield enduring insights on systems neuroscience. Neuroscientists are eager to adopt suitable tools for imaging neural activity in vivo, making this a golden age for engineering optogenetic indicators. Keywords: optogenetic tools; neuroscience; calcium sensor; voltage sensor; neurotransmitter

    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° опрСдСлСния характСристик ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² сСанса Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² облучСния онкологичСских ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с использованиСм мСдицинских Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ускоритСлСй ΠΈ Π³Π°ΠΌΠΌΠ°-тСрапСвтичСских Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ²

    Get PDF
    One of the main factors affecting the effectiveness of radiation therapy is the constancy of the patient’s position on the treatment table created by immobilization devices of various designs and held throughout the entire irradiation procedure, which guarantees the accuracy of the delivery of the prescribed dose distribution. The purpose of the work was to establish the numerical values of the dominant components of a radiation therapy session for each of the irradiation techniques most commonly used in clinical practice of the radiation therapy.To determine the numerical values of the components of the radiation therapy session, the authors have measured each component for some clinical cases of patients’ irradiation placed. The patients had been diagnosed with the following malignant tumours: prostate cancer, breast cancer, lung cancer, head and neck tumours. More than 2000 individual measurements have been carried out with the help of such medical linear accelerators as "Clinac", "Unique", "Truebeam", and the gamma-therapeutic apparatus named "Theratron".The numerical values of the time spent on 3 groups of parameters of an irradiation session were established: the mechanical parameters of the radiation therapy equipment, the functional characteristics of the irradiation systems and the parameters that directly depend on the personnel involved in an irradiation procedure.According to the measurement results, the flow diagram for the procedures of verifying a patient’s position on the therapeutic table (2 different techniques), preceding their irradiation and the radiation therapy procedures themselves was proposed. It has been shown that a number of session components can run in parallel to each other thus optimizing the time spent by a patient in the treatment room.Using the obtained values of the time spent on the radiation session parameters it is possible to actualize the mathematical model that will allow the medical physicist to determine in advance the duration of the irradiation session at the stage of treatment planning and choose a radiation therapy technique taking into account the individual parameters of the irradiation session in each particular clinical case.Одним ΠΈΠ· основных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π²Π»ΠΈΡΡŽΡ‰ΠΈΡ… Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ являСтся соблюдСниС постоянства полоТСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° Π½Π° Π»Π΅Ρ‡Π΅Π±Π½ΠΎΠΌ столС с использованиСм Ρ„ΠΈΠΊΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… приспособлСний Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… конструкций Π½Π° протяТСнии всСй ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ ΠΈΡ… облучСния, Ρ‡Ρ‚ΠΎ Π³Π°Ρ€Π°Π½Ρ‚ΠΈΡ€ΡƒΠ΅Ρ‚ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ доставки прСдписанной Π΄ΠΎΠ·Ρ‹ излучСния. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – установлСниС числСнных Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² сСанса Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ облучСния, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ примСняСмых Π² клиничСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ.Для установлСния числСнных Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² сСанса Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ измСрСния ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· Π½ΠΈΡ… для Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… клиничСских случаСв облучСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с локализациями злокачСствСнных Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ: Ρ€Π°ΠΊ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹, Ρ€Π°ΠΊ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹, Ρ€Π°ΠΊ Π»Π΅Π³ΠΊΠΎΠ³ΠΎ, ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π³ΠΎΠ»ΠΎΠ²Ρ‹ ΠΈ шСи (Π±ΠΎΠ»Π΅Π΅ 2000 ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ), осущСствляСмых с использованиСм мСдицинских Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ускоритСлСй ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ: Β«ClinacΒ», Β«UniqueΒ», Β«TruebeamΒ», Π° Ρ‚Π°ΠΊΠΆΠ΅ Π³Π°ΠΌΠΌΠ°-тСрапСвтичСского Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° Β«TheratronΒ».УстановлСны числСнныС значСния Π·Π°Ρ‚Ρ€Π°Ρ‡ΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для 3-Ρ… Π³Ρ€ΡƒΠΏΠΏ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² сСанса облучСния: мСханичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ характСристики систСм Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ облучСния ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹, Π½Π°ΠΏΡ€ΡΠΌΡƒΡŽ зависящиС ΠΎΡ‚ пСрсонала, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ Π² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ облучСния.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° Π±Π»ΠΎΠΊ-схСма для ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ полоТСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° Π½Π° тСрапСвтичСском столС (Π΄Π²Π΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ), ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΡŽ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° ΠΈ нСпосрСдствСнно ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π°ΠΌ Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Показано, Ρ‡Ρ‚ΠΎ ряд ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² сСанса ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡ‚ΡŒΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ, Π·Π° счёт Ρ‡Π΅Π³ΠΎ врСмя, ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠΌ Π² ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π½ΠΎΠΌ ΠΏΠΎΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΈ, ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎ.Π‘ использованиСм ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π·Π°Ρ‚Ρ€Π°Ρ‡ΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² сСанса облучСния Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Π° рСализация матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ, которая ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ сСанса облучСния Π½Π° этапС ΠΏΡ€Π΅Π΄Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΈ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΡƒ Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² облучСния Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΌ клиничСском случаС

    Аппаратная рСализация Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ динамичСской Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ

    Get PDF
    The effectiveness of the use of modern technologies and methods of radiation treatment depends on the means of quality control of the operational parameters of the radiotherapy equipment. The development of technical means for verification of the radiation therapy plan, allowing accurate assessment of the three-dimensional dose distribution in the target, is a priority task when introducing innovative methods of radiation treatment. The aim of the work is to develop tools for assessing the three-dimensional dose distribution of radiation therapy plans with intensity modulation using the magnitude of the absolute radiation dose. The authors analyzed the existing technical means and methods for verifying radiation therapy plans on medical linear electron accelerators, and also identified their shortcomings. It is shown that these techniques for verifying the three-dimensional dose distribution do not give an accurate idea of the absolute values of the radiation dose in the target. A system and a method are proposed that allows improving the accuracy of the verification of the radiation therapy plan by using the obtained cross-calibration coefficient determined taking into account the value of the radiation output of the medical linear accelerator immediately at the time of the implementation of both this procedure and the radiation therapy session, as well as a method for verifying the plan radiation therapy with their use.Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ примСнСния соврСмСнных Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π»ΡƒΡ‡Π΅Π²ΠΎΠ³ΠΎ лСчСния зависит ΠΎΡ‚ срСдств контроля качСства эксплуатационных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² радиотСрапСвтичСского оборудования. ВСрификация ΠΏΠ»Π°Π½Π° Π»ΡƒΡ‡Π΅Π²ΠΎΠ³ΠΎ лСчСния позволяСт ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ соотвСтствиС Π΄ΠΎΠ·ΠΎΠ²ΠΎΠ³ΠΎ распрСдСлСния, доставлСнного ΠΊ мишСни, Π·Π°ΠΏΠ»Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌΡƒ Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ с ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒΡŽ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° облучСния, Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°ΡŽΡ‰Π΅ΠΉ Π·Π°Π΄Π°Π½Π½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ критСрия приСмлСмости. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ ΠΈΠ½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ срСдства для ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π΄ΠΎΠ·ΠΎΠ²ΠΎΠ³ΠΎ распрСдСлСния ΠΏΠ»Π°Π½ΠΎΠ² Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ с модуляциСй интСнсивности, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ Π΄ΠΎΠ·Ρ‹ облучСния. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… тСхничСских срСдств ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ провСдСния Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΠ»Π°Π½ΠΎΠ² Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π½Π° мСдицинских Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ускоритСлях элСктронов, Π° Ρ‚Π°ΠΊΠΆΠ΅ выявлСны ΠΈΡ… нСдостатки. Показано, Ρ‡Ρ‚ΠΎ Π΄Π°Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ осущСствлСния Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π΄ΠΎΠ·ΠΎΠ²ΠΎΠ³ΠΎ распрСдСлСния Π½Π΅ Π΄Π°ΡŽΡ‚ Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ прСдставлСния ΠΎΠ± Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Ρ‹Ρ… значСниях Π΄ΠΎΠ·Ρ‹ излучСния Π² мишСни. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ систСма ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅Π΅ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ провСдСния Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΠ»Π°Π½Π° Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π·Π° счСт использования ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ кросс-ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠ³ΠΎ коэффициСнта опрСдСляСмого с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ значСния Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π²Ρ‹Ρ…ΠΎΠ΄Π° мСдицинского Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ускоритСля нСпосрСдствСнно Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ осущСствлСния ΠΊΠ°ΠΊ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹, Ρ‚Π°ΠΊ ΠΈ сСанса Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ способ провСдСния Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΠ»Π°Π½Π° Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ с ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ

    Near-Infrared Light-Controlled Gene Expression and Protein Targeting in Neurons and Non-neuronal Cells

    Get PDF
    Near-infrared (NIR) light-inducible binding of bacterial phytochrome BphP1 to its engineered partner, QPAS1, is used for optical protein regulation in mammalian cells. However, there are no data on the application of the BphP1-QPAS1 pair in cells derived from various mammalian tissues. Here, we tested the functionality of two BphP1-QPAS1-based optogenetic toolsan NIR- and blue-light-sensing system for control of protein localization (iRIS) and an NIR light-sensing system for transcription activation (TA)in several cell types, including cortical neurons. We found that the performance of these optogenetic tools often relied on physiological properties of a specific cell type, such as nuclear transport, which could limit the applicability of the blue-light-sensitive component of iRIS. In contrast, the NIR-light-sensing component of iRIS performed well in all tested cell types. The TA system showed the best performance in cervical cancer (HeLa), bone cancer (U-2 OS), and human embryonic kidney (HEK-293) cells. The small size of the QPAS1 component allowed the design of adeno-associated virus (AAV) particles, which were applied to deliver the TA system to neurons.Peer reviewe

    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΈ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½Ρ‹Π΅ срСдства ΠΎΡ†Π΅Π½ΠΊΠΈ количСствСнных характСристик ПЭВ-ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ исслСдовании динамичСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ²

    Get PDF
    The description of the original phantom design for assessing the quantitative characteristics of PET images in the study of dynamic objects is given. The phantom movement is controlled by the breath synchronization system, which records the phantom movement amplitude and the duration of the movement cycle. A curve was obtained that simulates human breathing, the parameters of which (amplitude and period) correspond to those obtained in the study of the chest. The values of the ecovery coefficients and contrast are obtained taking into account the sizes of the spheres, as well as the static and dynamic types of movement of phantoms. An assessment of the discrepancy between the recovery coefficients and the contrast values for the spheres installed inside the phantom in the static and dynamic states has been made. With a decrease in the diameter (respectively, and volume) of the sphere, an increase in the difference in values (between the static and dynamic positions of the phantom) of the recovery coefficient is observed. The optimal values of the recovery coefficients obtained using the QClear reconstruction algorithm have been determined. Recommendations for the use of the developed device in the study of dynamic objects are described. It is advisable to use the installation presented in this work to control the quality of the qualitative and quantitative characteristics of diagnostic images obtained both on PET/CT scanners and during studies using SPECT/CT (single-photon emission tomograph combined with a computed tomograph).ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΎ описаниС ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΡŒΠ½ΠΎΠΉ конструкции Ρ„Π°Π½Ρ‚ΠΎΠΌΠ° для ΠΎΡ†Π΅Π½ΠΊΠΈ количСствСнных характСристик ПЭВ-ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ исслСдовании динамичСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ². Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ„Π°Π½Ρ‚ΠΎΠΌΠ° контролируСтся систСмой синхронизации дыхания, которая фиксируСт Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρƒ двиТСния Ρ„Π°Π½Ρ‚ΠΎΠΌΠ° ΠΈ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ†ΠΈΠΊΠ»Π° двиТСния. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π° кривая, ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ Π΄Ρ‹Ρ…Π°Π½ΠΈΠ΅ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ (Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π° ΠΈ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄), ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ показатСлям, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹ΠΌ ΠΏΡ€ΠΈ исслСдовании Π³Ρ€ΡƒΠ΄Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ. УстановлСны значСния коэффициСнтов восстановлСния ΠΈ контраста с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² сфСр, Π° Ρ‚Π°ΠΊΠΆΠ΅ статичСского ΠΈ динамичСского Ρ‚ΠΈΠΏΠΎΠ² двиТСния Ρ„Π°Π½Ρ‚ΠΎΠΌΠΎΠ². ΠŸΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° нСсоотвСтствия коэффициСнтов восстановлСния ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ контраста для сфСр, установлСнных Π²Π½ΡƒΡ‚Ρ€ΡŒ Ρ„Π°Π½Ρ‚ΠΎΠΌΠ° Π² статичСском ΠΈ динамичСском состояниях. Π‘ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° (соотвСтствСнно, ΠΈ объСма) сфСры Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ возрастаниС Ρ€Π°Π·Π½ΠΈΡ†Ρ‹ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ (ΠΌΠ΅ΠΆΠ΄Ρƒ статичСским ΠΈ динамичСским полоТСниями Ρ„Π°Π½Ρ‚ΠΎΠΌΠ°) коэффициСнта восстановлСния. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ значСния коэффициСнтов восстановлСния, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… ΠΏΡ€ΠΈ использовании рСконструкционного Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° QClear. ΠžΠΏΠΈΡΠ°Π½Ρ‹ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ ΠΏΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ устройства ΠΏΡ€ΠΈ исслСдовании динамичСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ². ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π½ΡƒΡŽ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ установку цСлСсообразно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для контроля качСства качСствСнных ΠΈ количСствСнных характСристик диагностичСских ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… ΠΊΠ°ΠΊ Π½Π° ПЭВ/КВ сканСрах, Ρ‚Π°ΠΊ ΠΈ ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ исслСдований с использованиСм ОЀЭКВ/КВ (ΠΎΠ΄Π½ΠΎΡ„ΠΎΡ‚ΠΎΠ½Π½Ρ‹ΠΉ эмиссионный Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„, совмСщСнный с ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹ΠΌ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΎΠΌ)

    ВлияниС точности позиционирования онкологичСских ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ провСдСния Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ с использованиСм мСдицинских Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ускоритСлСй элСктронов Π½Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ доставляСмого ΠΈΠΌ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π΄ΠΎΠ·ΠΎΠ²ΠΎΠ³ΠΎ распрСдСлСния

    Get PDF
    Due to the rapid development and further improvement of radiation treatment technologies oncologists have an opportunity to precisely deliver individual dose distributions to the tumor, minimizing the doses obtained by critical organs and healthy structures. For the correct and successful application of these complex methods of radiation therapy, it was necessary to enforce the requirements for the technical and dosimetric parameters of the radiotherapy equipment. The purpose of the research is to determine the magnitude of the possible error for patients’ positioning during their radiotherapy treatments using medical linear accelerators by modeling the impact of the patient’s body on the treatment couch. To determine the values of a possible error, the authors have considered the design and characteristics of a typical treatment couch, developed a model of the β€œaverage” patient’s body (phantom), which allowed changing the load to the treatment couch with a step of 1 kg. The position parameters of treatment couches were determined for the main types of localization of radiation therapy for malignant tumors: head and neck tumors, breast tumors and pelvic tumors. Numerical values of the treatment coach deviations from prescribed horizontal position were experimentally established for a load from 40 to 180 kg for a treatment couch used at the N.N. Alexandrov National Cancer Centre of Belarus. Based on the obtained experimental data, the necessity to correct the patient's treatment conditions at the stage of treatment planning were confirmed in order to ensure the delivery accuracy of individual dose distributions as required by the radiation therapy protocols. Authors stated that an analysis of the dependence of the deviations in the dose delivered to the patients on the deviation of the radiotherapy table from its horizontal position should be carried out for each radiotherapy table used in clinical practice. The development and implementation of a mechanism that will allow considering this information when choosing the parameters of the patient’s treatment session and prescribing the dose for any localization of malignant neoplasms is needed.Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ развития Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ онкологичСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Ρƒ Π²Ρ€Π°Ρ‡Π΅ΠΉ – Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΎΠ² появилась Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€Π΅Ρ†ΠΈΠ·ΠΈΠΎΠ½Π½ΠΎ Π΄ΠΎΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Π΅ Π΄ΠΎΠ·ΠΎΠ²Ρ‹Π΅ распрСдСлСния Π² объСм ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ, максимально снизив Π΄ΠΎΠ·ΠΎΠ²Ρ‹Π΅ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Π½Π° критичСскиС ΠΎΡ€Π³Π°Π½Ρ‹, находящиСся Π² нСпосрСдствСнной близости ΠΊ Π·ΠΎΠ½Π΅ облучСния. Однако для ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎΠ³ΠΎ примСнСния Ρ‚Π°ΠΊΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π±Ρ‹Π»ΠΎ ΡƒΠΆΠ΅ΡΡ‚ΠΎΡ‡ΠΈΡ‚ΡŒ трСбования, ΠΏΡ€Π΅Π΄ΡŠΡΠ²Π»ΡΠ΅ΠΌΡ‹Π΅ ΠΊ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΎ-дозимСтричСским ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌ радиотСрапСвтичСского оборудования, точности настройки ΠΈ ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΊΠΈ Π΅Π³ΠΎ гСомСтричСских, мСханичСских ΠΈ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ². ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΉ ошибки ΠΏΡ€ΠΈ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ провСдСния Π»ΡƒΡ‡Π΅Π²ΠΎΠ³ΠΎ лСчСния с использованиСм мСдицинских Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ускоритСлСй элСктронов ΠΏΡƒΡ‚Π΅ΠΌ модСлирования воздСйствия Ρ‚Π΅Π»Π° ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° Π½Π° радиотСрапСвтичСский стол (Π Π’Π‘). Для опрСдСлСния Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ошибки Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ рассмотрСна конструкция ΠΈ характСристики Ρ‚ΠΈΠΏΠΎΠ²Ρ‹Ρ… Π Π’Π‘, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° модСль «срСднСго» Ρ‚Π΅Π»Π° ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π°Ρ ΠΈΠ·ΠΌΠ΅Π½ΡΡ‚ΡŒ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ Π½Π° Ρ‚Π΅Ρ€Π°ΠΏΠ΅Π²Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ (ВП) Π Π’Π‘ с шагом 1 ΠΊΠ³. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ полоТСния ВП для основных Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΉ Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ злокачСствСнных Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ: ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΈ шСи, ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ Π³Ρ€ΡƒΠ΄Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈ ΠΌΠ°Π»ΠΎΠ³ΠΎ Ρ‚Π°Π·Π°. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ установлСны числСнныС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ отклонСния ВП Π² ΠΈΠ·ΠΎΡ†Π΅Π½Ρ‚Ρ€Π΅ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поля ΠΎΡ‚ прСдписанного Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ полоТСния ΠΏΡ€ΠΈ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ΅ Π½Π° Π½Π΅Π΅ ΠΎΡ‚ 40 Π΄ΠΎ 180 ΠΊΠ³ для ВП, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… Π² РНПЦ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ мСдицинской Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈΠΌ. Н.Н. АлСксандрова. На основании ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ провСдСния ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ условий облучСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° Π½Π° этапС модСлирования ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π΅Π³ΠΎ лСчСния для обСспСчСния Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠΉ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π°ΠΌΠΈ Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ точности доставки ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… Π΄ΠΎΠ·ΠΎΠ²Ρ‹Ρ… распрСдСлСний, для Ρ‡Π΅Π³ΠΎ слСдуСт провСсти Π°Π½Π°Π»ΠΈΠ· зависимости ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ Π² Π΄ΠΎΠ·Π΅, доставляСмой ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°ΠΌ, ΠΎΡ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ отклонСния ВП Π Π’Π‘ ΠΎΡ‚ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ полоТСния для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Π² клиничСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Π Π’Π‘, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ ΠΈ Π²Π½Π΅Π΄Ρ€ΠΈΡ‚ΡŒ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ эту ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΏΡ€ΠΈ Π²Ρ‹Π±ΠΎΡ€Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² сСанса облучСния ΠΈ прСдписания Π΄ΠΎΠ·Ρ‹ для любой Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ злокачСствСнных Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈ

    УстановлСниС ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² Ξ³-Π°Π½Π°Π»ΠΈΠ·Π° ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… Π΄ΠΎΠ·ΠΎΠ²Ρ‹Ρ… распрСдСлСний ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΠ»Π°Π½ΠΎΠ² облучСния онкологичСских ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² высокотСхнологичной Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ

    Get PDF
    A typical process for verification of treatment plans in intensity-modulated radiation therapy is described. The main errors and uncertainties that arise in the course of planning dose distribution and in the process of dose delivery are listed. Methods for comparing dose distributions are considered: the distance to agreement (DTA) and the test for the algebraic dose difference. Formulas for calculating the shift of points of dose distributions, as well as the minimum value of the shift of points, are provided. The influences of global and local normalization and spatial resolution on the interpretation of the results obtained are defined. A methodology for determining reasonable criteria for gamma-analysis of individual dose distributions when verifying plans for irradiation of cancer patients using high-tech radiation therapy methods has been developed. Using the procedure proposed by the authors to establish action limits and tolerances will make it possible to assess the quality of medical care provided in healthcare institutions when using high-tech radiotherapy methodsОписан Ρ‚ΠΈΠΏΠΎΠ²ΠΎΠΉ процСсс Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΠ»Π°Π½ΠΎΠ² облучСния Π² Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ с модуляциСй интСнсивности. ΠŸΠ΅Ρ€Π΅Ρ‡ΠΈΡΠ»Π΅Π½Ρ‹ основныС ошибки ΠΈ нСопрСдСлСнности, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΠ΅ Π² Ρ…ΠΎΠ΄Π΅ планирования Π΄ΠΎΠ·ΠΎΠ²ΠΎΠ³ΠΎ распрСдСлСния ΠΈ Π² процСссС доставки Π΄ΠΎΠ·Ρ‹. РассмотрСны способы сравнСния ΠΈ сопоставлСния Π΄ΠΎΠ·ΠΎΠ²Ρ‹Ρ… распрСдСлСний: ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ расстояния (DTA) ΠΈ тСст Π½Π° Π°Π»Π³Π΅Π±Ρ€Π°ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄ΠΎΠ·. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для расчСта смСщСния Ρ‚ΠΎΡ‡Π΅ΠΊ Π΄ΠΎΠ·ΠΎΠ²Ρ‹Ρ… распрСдСлСний, Π° Ρ‚Π°ΠΊΠΆΠ΅ минимального значСния смСщСния Ρ‚ΠΎΡ‡Π΅ΠΊ. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ влияниС глобальной ΠΈ локальной Π½ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ пространствСнного Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π½Π° ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΡŽ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ². Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° мСтодология опрСдСлСния обоснованных ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² Ξ³-Π°Π½Π°Π»ΠΈΠ·Π° ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… Π΄ΠΎΠ·ΠΎΠ²Ρ‹Ρ… распрСдСлСний ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΠ»Π°Π½ΠΎΠ² облучСния онкологичСских ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² высокотСхнологичной Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. ИспользованиС ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ для установлСния ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ дСйствия ΠΈ допусков ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ качСство ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ мСдицинской ΠΏΠΎΠΌΠΎΡ‰ΠΈ Π² учрСТдСниях здравоохранСния ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² высокотСхнологичной Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ

    Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe

    Get PDF
    Photoacoustic tomography (PAT) of genetically encoded probes allows for imaging of targeted biological processes deep in tissues with high spatial resolution; however, high background signals from blood can limit the achievable detection sensitivity. Here we describe a reversibly switchable nonfluorescent bacterial phytochrome for use in multiscale photoacoustic imaging, BphP1, with the most red-shifted absorption among genetically encoded probes. BphP1 binds a heme-derived biliverdin chromophore and is reversibly photoconvertible between red and near-infrared light-absorption states. We combined single-wavelength PAT with efficient BphP1 photoswitching, which enabled differential imaging with substantially decreased background signals, enhanced detection sensitivity, increased penetration depth and improved spatial resolution. We monitored tumor growth and metastasis with ~100-ΞΌm resolution at depths approaching 10 mm using photoacoustic computed tomography, and we imaged individual cancer cells with a suboptical-diffraction resolution of ~140 nm using photoacoustic microscopy. This technology is promising for biomedical studies at several scales

    Theta and gamma rhythmic coding through two spike output modes in the hippocampus during spatial navigation

    Get PDF
    Hippocampal CA1 neurons generate single spikes and stereotyped bursts of spikes. However, it is unclear how individual neurons dynamically switch between these output modes and whether these two spiking outputs relay distinct information. We performed extracellular recordings in spatially navigating rats and cellular voltage imaging and optogenetics in awake mice. We found that spike bursts are preferentially linked to cellular and network theta rhythms (3–12 Hz) and encode an animal's position via theta phase precession, particularly as animals are entering a place field. In contrast, single spikes exhibit additional coupling to gamma rhythms (30–100 Hz), particularly as animals leave a place field. Biophysical modeling suggests that intracellular properties alone are sufficient to explain the observed input frequency-dependent spike coding. Thus, hippocampal neurons regulate the generation of bursts and single spikes according to frequency-specific network and intracellular dynamics, suggesting that these spiking modes perform distinct computations to support spatial behavior.Fil: Lowet, Eric. Boston University; Estados UnidosFil: Sheehan, Daniel J.. Boston University; Estados UnidosFil: Chialva, Ulises. Universidad Nacional del Sur. Departamento de MatemΓ‘tica; Argentina. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas. Centro CientΓ­fico TecnolΓ³gico Conicet - BahΓ­a Blanca; ArgentinaFil: De Oliveira Pena, Rodrigo. New Jersey Institute of Technology; Estados UnidosFil: Mount, Rebecca A.. Boston University; Estados UnidosFil: Xiao, Sheng. Boston University; Estados UnidosFil: Zhou, Samuel L.. Boston University; Estados UnidosFil: Tseng, Hua-an. Boston University; Estados UnidosFil: Gritton, Howard. University of Illinois. Urbana - Champaign; Estados UnidosFil: Shroff, Sanaya. Boston University; Estados UnidosFil: Kondabolu, Krishnakanth. Boston University; Estados UnidosFil: Cheung, Cyrus. Boston University; Estados UnidosFil: Wang, Yangyang. Boston University; Estados UnidosFil: Piatkevich, Kiryl D.. Westlake University; ChinaFil: Boyden, Edward S.. McGovern Institute for Brain Research; Estados Unidos. Massachusetts Institute of Technology; Estados UnidosFil: Mertz, Jerome. Boston University; Estados UnidosFil: Hasselmo, Michael E.. Boston University; Estados UnidosFil: Rotstein, Horacio. New Jersey Institute of Technology; Estados UnidosFil: Han, Xue. Boston University; Estados Unido
    • …
    corecore