1,720 research outputs found
Compact Dual-Band Planar Inverted-e-Shaped Antenna Using Defected Ground Structure
This paper presents a novel dual-band planar inverted-e-shaped antenna (PIEA) using defected ground structure (DGS) for Bluetooth and wireless local area network (WLAN) applications. The PIEA can reduce electromagnetic interferences (EMIs) and it is constructed on a compact printed circuit board (PCB) size of 10 × 5 × 4 mm3. Experimental results indicate that the antenna with a compact meandered slit can improve the operating impedance matching and bandwidths at 2.4 and 5.5 GHz. The measured power gains at 2.4 and 5.5 GHz band are 1.99 and 3.71 dBi; antenna efficiencies are about 49.33% and 55.23%, respectively. Finally, the good performances of the proposed antenna can highly promote for mobile device applications
Assisted Inflation in Randall-Sundrum Scenario
We extend the Randall-Sundrum(RS) model by adding a fundamental scalar field
in the bulk, then study the multi-field assisted inflationary solution on
brane. We will show that this model satisfies not only the observation, but
also provides a solution to hierarchy problem. Furthermore in comparison with
the chaotic inflation model with a single field in four space-time dimension,
the parameters in our model required for a successful inflation are natural.Comment: 10 page
Into building fading at L- and S-band for satellite PCS
Selected results from L- and S-Band slant-path fade measurements into six different buildings employing a tower-mounted transmitter and dual-frequency receiver are presented. The objective of the measurements was to provide information for personal communications satellite design on the correlation of fading inside buildings between frequencies near 1620 and 2500 MHz. Fades were measured along horizontal directions with 5 cm spacing. Fade differences between L- and S-Band exhibited a normal distribution with means usually near 0 dB and standard deviations from 7.2 to 8.2 dB. After spatial averaging over a few wavelengths, the correlation between L- and S-Band was significantly improved. Simultaneous swept measurements over 160 MHz spans showed that the standard deviation of the power levels as function of frequency increased linearly with average fade depth from a minimum of about 1.3 dB and increased by .2 dB per 1 dB of fade. Fade slopes were also a function of fade level, with LMSS-Band averages in the range of 1 to 2 dB/MHz for 10 dB fades and increasing to about 3 to 4 dB/MHz at a 30 dB fade
Molecular population genetics and gene expression analysis of duplicated CBF genes of Arabidopsis thaliana
<p>Abstract</p> <p>Background</p> <p><it>CBF/DREB </it>duplicate genes are widely distributed in higher plants and encode transcriptional factors, or CBFs, which bind a DNA regulatory element and impart responsiveness to low temperatures and dehydration.</p> <p>Results</p> <p>We explored patterns of genetic variations of <it>CBF1, -2</it>, and -<it>3 </it>from 34 accessions of <it>Arabidopsis thaliana</it>. Molecular population genetic analyses of these genes indicated that <it>CBF2 </it>has much reduced nucleotide diversity in the transcriptional unit and promoter, suggesting that <it>CBF2 </it>has been subjected to a recent adaptive sweep, which agrees with reports of a regulatory protein of <it>CBF2</it>. Investigating the ratios of K<sub>a</sub>/K<sub>s </sub>between all paired <it>CBF </it>paralogus genes, high conservation of the AP2 domain was observed, and the major divergence of proteins was the result of relaxation in two regions within the transcriptional activation domain which was under positive selection after <it>CBF </it>duplication. With respect to the level of <it>CBF </it>gene expression, several mutated nucleotides in the promoters of <it>CBF3 </it>and <it>-1 </it>of specific ecotypes might be responsible for its consistently low expression.</p> <p>Conclusion</p> <p>We concluded from our data that important evolutionary changes in <it>CBF1, -2</it>, and -<it>3 </it>may have primarily occurred at the level of gene regulation as well as in protein function.</p
Dietary Quercetin Increases Colonic Microbial Diversity and Attenuates Colitis Severity in Citrobacter rodentium-Infected Mice
Disturbed balance between microbiota, epithelial cells, and resident immune cells within the intestine contributes to inflammatory bowel disease (IBD) pathogenesis. The Citrobacter rodentium-induced colitis mouse model has been well documented. This model allows the analysis of host responses to enteric bacteria and facilitates improved understanding of the potential mechanisms of IBD pathogenesis. The current study evaluated the effects of dietary 30 mg/kg quercetin supplementation on C. rodentium-induced experimental colitis in C57BL/6 mice. Following dietary quercetin supplementation, the mice were infected with 5 × 108 CFU C. rodentium, and the pathological effects of C. rodentium were measured. The results showed that quercetin alleviated the effects of C. rodentium-induced colitis, suppressed the production of pro-inflammatory cytokines, such as interleukin (IL)-17, tumor necrosis factor alpha, and IL-6 (p < 0.05), and promoted the production of IL-10 in the colon tissues (p < 0.05). Quercetin supplementation also enhanced the populations of Bacteroides, Bifidobacterium, Lactobacillus, and Clostridia and significantly reduced those of Fusobacterium and Enterococcus (p < 0.05). These findings indicate that dietary quercetin exerts therapeutic effects on C. rodentium-induced colitis, probably due to quercetin’s ability to suppress pro-inflammatory cytokines and/or modify gut microbiota. Thus, these results suggest that quercetin supplementation is effective in controlling C. rodentium-induced inflammation
Recommended from our members
Phase Control on Surface for the Stabilization of High Energy Cathode Materials of Lithium Ion Batteries.
The development of high energy electrode materials for lithium ion batteries is challenged by their inherent instabilities, which become more aggravated as the energy densities continue to climb, accordingly causing increasing concerns on battery safety and reliability. Here, taking the high voltage cathode of LiNi0.5Mn1.5O4 as an example, we demonstrate a protocol to stabilize this cathode through a systematic phase modulating on its particle surface. We are able to transfer the spinel surface into a 30 nm shell composed of two functional phases including a rock-salt one and a layered one. The former is electrochemically inert for surface stabilization while the latter is designated to provide necessary electrochemical activity. The precise synthesis control enables us to tune the ratio of these two phases, and achieve an optimized balance between improved stability against structural degradation without sacrificing its capacity. This study highlights the critical importance of well-tailored surface phase property for the cathode stabilization of high energy lithium ion batteries
- …