296 research outputs found

    Aerobic growth of Rhodococcus aetherivorans BCP1 using selected naphthenic acids as the sole carbon and energy sources

    Get PDF
    Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL-1. The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survival on NAs included changes in cell morphology, production of intracellular bodies and changes in fatty acid composition. Transmission electron microscopy (TEM) analysis of BCP1 cells grown on CHCA or CPCA showed a slight reduction in the cell size, the production of EPS-like material and intracellular electron-transparent and electron-dense inclusion bodies. The electron-transparent inclusions increased in the amount and size in NA-grown BCP1 cells under nitrogen limiting conditions and contained storage lipids as suggested by cell staining with the lipophilic Nile Blue A dye. Lipidomic analyses revealed significant changes with increases of methyl-branched (MBFA) and polyunsaturated fatty acids (PUFA) examining the fatty acid composition of NAs-growing BCP1 cells. PUFA biosynthesis is not usual in bacteria and, together with MBFA, can influence structural and functional processes with resulting effects on cell vitality. Finally, through the use of RT (Reverse Transcription)-qPCR, a gene cluster (chcpca) was found to be transcriptionally induced during the growth on CHCA and CPCA. Based on the expression and bioinformatics results, the predicted products of the chcpca gene cluster are proposed to be involved in aerobic NA degradation in R. aetherivorans BCP1. This study provides first insights into the genetic and metabolic mechanisms allowing a Rhodococcus strain to aerobically degrade NAs

    Unpolarized transverse momentum distributions from a global fit of Drell-Yan and semi-inclusive deep-inelastic scattering data

    Get PDF
    We present an extraction of unpolarized transverse-momentum-dependent parton distribution and fragmentation functions based on more than two thousand data points from several experiments for two different processes: semi-inclusive deep-inelastic scattering and Drell-Yan production. The baseline analysis is performed using the Monte Carlo replica method and resumming large logarithms at (NLL)-L-3 accuracy. The resulting description of the data is very good (chi(2)/N-dat = 1.06). For semi-inclusive deep-inelastic scattering, predictions for multiplicities are normalized by factors that cure the discrepancy with data introduced by higher-order perturbative corrections

    Volatile Compounds of Lemon and Grapefruit IntegroPectin

    Get PDF
    An HS-SPME GC-MS analysis of the volatile compounds adsorbed at the outer surface of lemon and grapefruit pectins obtained via the hydrodynamic cavitation of industrial waste streams of lemon and grapefruit peels in water suggests important new findings en route to understanding the powerful and broad biological activity of these new pectic materials. In agreement with the ultralow degree of esterification of these pectins, the high amount of highly bioactive α-terpineol and terpinen-4-ol points to limonene (and linalool) decomposition catalyzed by residual citric acid in the citrus waste peel residue of the juice industrial production

    Silicon resonant microcantilevers for absolute pressure measurement

    Get PDF
    This work is focused on the developing of silicon resonant microcantilevers for the measurement of the absolute pressure. The microcantilevers have been fabricated with a two-mask bulk micromachining process. The variation in resonance response of microcantilevers was investigated as a function of pressure 10−1-105 Pa, both in terms of resonance frequency and quality factor. A theoretical description of the resonating microstructure is given according to different molecular and viscous regimes. Also a brief discussion on the different quality factors contributions is presented. Theoretical and experimental data show a very satisfying agreement. The microstructure behavior demonstrates a certain sensitivity over a six decade range and the potential evolution of an absolute pressure sensor working in the same rang

    Inverted Scanning Microwave Microscope for In Vitro Imaging and Characterization of Biological Cells

    Full text link
    This paper presents for the first time an innovative instrument called an inverted scanning microwave microscope (iSMM), which is capable of noninvasive and label-free imaging and characterization of intracellular structures of a live cell on the nanometer scale. In particular, the iSMM is sensitive to not only surface structures, but also ectromagnetic properties up to one micrometer below the surface. Conveniently, the iSMM can be constructed through straightforward conversion of any scanning probe microscope, such as the atomic force microscope or the scanning tunneling microscope, with a simple metal probe to outperform traditional SMM in terms of ruggedness, and width, sensitivity and dynamic range. By contrast, the application of the traditional SMM to date has been limited to mainly surface physics and semiconductor technology, because the traditional SMM requires a fragile and expensive probe and is incompatible with saline solution or live biological cells.Comment: 5 pages, 4 figures, published in Applied Physics Letter

    Comprehensive longitudinal non-invasive quantification of healthspan and frailty in a large cohort (n = 546) of geriatric C57BL/6 J mice

    Get PDF
    Frailty is an age-related condition characterized by a multisystem functional decline, increased vulnerability to stressors, and adverse health outcomes. Quantifying the degree of frailty in humans and animals is a health measure useful for translational geroscience research. Two frailty measurements, namely the frailty phenotype (FP) and the clinical frailty index (CFI), have been validated in mice and are frequently applied in preclinical research. However, these two tools are based on different concepts and do not necessarily identify the same mice as frail. In particular, the FP is based on a dichotomous classification that suffers from high sample size requirements and misclassification problems. Based on the monthly longitudinal non-invasive assessment of frailty in a large cohort of mice, here we develop an alternative scoring method, which we called physical function score (PFS), proposed as a continuous variable that resumes into a unique function, the five criteria included in the FP. This score would not only reduce misclassification of frailty but it also makes the two tools, PFS and CFI, integrable to provide an overall measurement of health, named vitality score (VS) in aging mice. VS displays a higher association with mortality than PFS or CFI and correlates with biomarkers related to the accumulation of senescent cells and the epigenetic clock. This longitudinal non-invasive assessment strategy and the VS may help to overcome the different sensitivity in frailty identification, reduce the sample size in longitudinal experiments, and establish the effectiveness of therapeutic/preventive interventions for frailty or other age-related diseases in geriatric animals
    • …
    corecore