1,047 research outputs found
Tomato: a crop species amenable to improvement by cellular and molecular methods
Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures.
In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
Neutrino-Deuteron Scattering in Effective Field Theory at Next-to-Next-to Leading Order
We study the four channels associated with neutrino-deuteron breakup
reactions at next-to-next to leading order in effective field theory. We find
that the total cross-section is indeed converging for neutrino energies up to
20 MeV, and thus our calculations can provide constraints on theoretical
uncertainties for the Sudbury Neutrino Observatory. We stress the importance of
a direct experimental measurement to high precision in at least one channel, in
order to fix an axial two-body counterterm.Comment: 32 pages, 14 figures (eps
1/f Noise in Electron Glasses
We show that 1/f noise is produced in a 3D electron glass by charge
fluctuations due to electrons hopping between isolated sites and a percolating
network at low temperatures. The low frequency noise spectrum goes as
\omega^{-\alpha} with \alpha slightly larger than 1. This result together with
the temperature dependence of \alpha and the noise amplitude are in good
agreement with the recent experiments. These results hold true both with a
flat, noninteracting density of states and with a density of states that
includes Coulomb interactions. In the latter case, the density of states has a
Coulomb gap that fills in with increasing temperature. For a large Coulomb gap
width, this density of states gives a dc conductivity with a hopping exponent
of approximately 0.75 which has been observed in recent experiments. For a
small Coulomb gap width, the hopping exponent approximately 0.5.Comment: 8 pages, Latex, 6 encapsulated postscript figures, to be published in
Phys. Rev.
Coronal Diagnostics from Narrowband Images around 30.4 nm
Images taken in the band centered at 30.4 nm are routinely used to map the
radiance of the He II Ly alpha line on the solar disk. That line is one of the
strongest, if not the strongest, line in the EUV observed in the solar
spectrum, and one of the few lines in that wavelength range providing
information on the upper chromosphere or lower transition region. However, when
observing the off-limb corona the contribution from the nearby Si XI 30.3 nm
line can become significant. In this work we aim at estimating the relative
contribution of those two lines in the solar corona around the minimum of solar
activity. We combine measurements from CDS taken in August 2008 with
temperature and density profiles from semiempirical models of the corona to
compute the radiances of the two lines, and of other representative coronal
lines (e.g., Mg X 62.5 nm, Si XII 52.1 nm). Considering both diagnosed
quantities from line ratios (temperatures and densities) and line radiances in
absolute units, we obtain a good overall match between observations and models.
We find that the Si XI line dominates the He II line from just above the limb
up to ~2 R_Sun in streamers, while its contribution to narrowband imaging in
the 30.4 nm band is expected to become smaller, even negligible in the corona
beyond ~2 - 3 R_Sun, the precise value being strongly dependent on the coronal
temperature profile.Comment: 26 pages, 11 figures; to be published in: Solar Physic
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
Electromagnetically induced transparency and controlled group velocity in a multilevel system
Published versio
National Plans of Action (NPOAs) for reducing seabird bycatch: Developing best practice for assessing and managing fisheries impacts
Fisheries bycatch is one of the biggest threats to seabird populations. Managers need to identify where and when bycatch occurs and ensure effective action. In 1999, the Food and Agriculture Organization of the United Nations released the International Plan of Action for Reducing Incidental Catch of Seabirds in Longline Fisheries (IPOA-s) encouraging states to voluntarily assess potential seabird bycatch problems and implement a National Plan of Action (NPOA) if needed. However, the IPOA-s is ambiguous about the steps and objectives, diminishing its value as a conservation tool
The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles
In the G0 experiment, performed at Jefferson Lab, the parity-violating
elastic scattering of electrons from protons and quasi-elastic scattering from
deuterons is measured in order to determine the neutral weak currents of the
nucleon. Asymmetries as small as 1 part per million in the scattering of a
polarized electron beam are determined using a dedicated apparatus. It consists
of specialized beam-monitoring and control systems, a cryogenic hydrogen (or
deuterium) target, and a superconducting, toroidal magnetic spectrometer
equipped with plastic scintillation and aerogel Cerenkov detectors, as well as
fast readout electronics for the measurement of individual events. The overall
design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
- …
