691 research outputs found

    Temperature-dependent Hall scattering factor and drift mobility in remotely doped Si:B/SiGe/Si heterostructures

    Get PDF
    Hall-and-Strip measurements on modulation-doped SiGe heterostructures and combined Hall and capacitance–voltage measurements on metal-oxide-semiconductor (MOS)-gated enhancement mode structures have been used to deduce Hall scattering factors, rH, in the Si1 – xGex two-dimensional hole gas. At 300 K, rH was found to be equal to 0.4 for x = 0.2 and x = 0.3. Knowing rH, it is possible to calculate the 300 K drift mobilities in the modulation-doped structures which are found to be 400 cm2 V – 1 s – 1 at a carrier density of 3.3 × 1011 cm – 2 for x = 0.2 and 300 cm2 V – 1 s – 1 at 6.3 × 1011 cm – 2 for x = 0.3, factors of between 1.5 and 2.0 greater than a Si pMOS control

    Effective mass and quantum lifetime in a Si/Si0.87Ge0.13/Si two-dimensional hole gas

    Get PDF
    Measurements of Shubnikov de Haas oscillations in the temperature range 0.3–2 K have been used to determine an effective mass of 0.23 m0 in a Si/Si0.87Ge0.13/Si two-dimensional hole gas. This value is in agreement with theoretical predictions and with that obtained from cyclotron resonance measurements. The ratio of the transport time to the quantum lifetime is found to be 0.8. It is concluded that the 4 K hole mobility of 11 000 cm2 V−1 s−1 at a carrier sheet density of 2.2×1011 cm−2 is limited by interface roughness and short-range interface charge scattering

    Measuring antimatter gravity with muonium

    Get PDF
    The gravitational acceleration of antimatter, ḡ, has never been directly measured and could bear importantly on our understanding of gravity, the possible existence of a fifth force, and the nature and early history of the universe. Only two avenues for such a measurement appear to be feasible: antihydrogen and muonium. The muonium measurement requires a novel, monoenergetic, low-velocity, horizontal muonium beam directed at an atom interferometer. The precision three-grating interferometer can be produced in silicon nitride or ultrananocrystalline diamond using state-of-the-art nanofabrication. The required precision alignment and calibration at the picometer level also appear to be feasible. With 100 nm grating pitch, a 10% measurement of ḡ can be made using some months of surface-muon beam time, and a 1% or better measurement with a correspondingly larger exposure. This could constitute the first gravitational measurement of leptonic matter, of 2nd-generation matter and, possibly, the first measurement of the gravitational acceleration of antimatter

    Low temperature characterization of modulation doped SiGe grown on bonded silicon-on-insulator

    Get PDF
    Modulation doped pseudomorphic Si0.87Ge0.13 strained quantum wells were grown on bonded silicon-on-insulator (SOI) substrates. Comparison with similar structures grown on bulk Si(100) wafers shows that the SOI material has higher mobility at low temperatures with a maximum value of 16 810 cm 2/V s for 2.05 × 1011 cm – 2 carries at 298 mK. Effective masses obtained from the temperature dependence of Shubnikov–de Haas oscillations have a value of (0.27 ± 0.02) m0 compared to (0.23 ± 0.02) m0 for quantum wells on Si(100) while the cyclotron resonance effective masses obtained at higher magnetic fields without consideration for nonparabolicity effects have values between 0.25 and 0.29 m0. Ratios of the transport and quantum lifetimes, tau/tau q=2.13 ± 0.10, were obtained for the SOI material that are, we believe, the highest reported for any pseudomorphic SiGe modulation doped structure and demonstrates that there is less interface roughness or charge scattering in the SOI material than in metal–oxide–semiconductor field effect transistors or other pseudomorphic SiGe modulation doped quantum wells

    Effective mobilities in pseudomorphic Si/SiGe/Si p-channel metal-oxide-semiconductor field-effect transistors with thin silicon capping layers

    Get PDF
    The room-temperature effective mobilities of pseudomorphic Si/Si0.64Ge0.36/Si p-metal-oxidesemiconductor field effect transistors are reported. The peak mobility in the buried SiGe channel increases with silicon cap thickness. It is argued that SiO2/Si interface roughness is a major source of scattering in these devices, which is attenuated for thicker silicon caps. It is also suggested that segregated Ge in the silicon cap interferes with the oxidation process, leading to increased SiO2/Si interface roughness in the case of thin silicon caps

    Crossing the Antarctica: Exploring the Effects of Appetite-Regulating Hormones and Indicators of Nutrition Status during a 93-Day Solo-Expedition

    Get PDF
    Future deep space astronauts must maintain adequate nutrition despite highly stressful, isolated, confined and dangerous environments. The present case-study investigated appetite regulating hormones, nutrition status, and physical and emotional stress in a space analog condition: an explorer conducting a 93-day unsupported solo crossing of Antarctica. Using the dried blood spot (DBS) method, the subject drew samples of his blood on a regular basis during the expedition. The DBSs were later analyzed for the appetite regulating hormones leptin and adiponectin. Energy intake and nutritional status were monitored by analysis of albumin and globulin (including their ratio). Interleukin-6 (IL-6) was also analyzed and used as an energy sensor. The results showed a marked reduction in levels of the appetite-reducing hormone, leptin, and the appetite stimulating hormone, adiponectin, during both extreme physical and psychological strain. Nutrition status showed a variation over the expedition, with below-normal levels during extreme psychological strain and levels abutting the lower bounds of the normal range during a phase dominated by extreme physical hardship. The IL-6 levels varied substantially, with levels above the normal range except during the recovery phase. It was concluded that a daily intake of 5058 to 5931 calories seemed to allow recovery of both appetite and nutritional status between extreme physical and psychological hardship during a long Arctic expedition. Furthermore, IL-6 may be a sensor in the muscle-liver, muscle-fat and muscle-brain crosstalk. These results may help guide nutrition planning for future astronaut crews, mountaineers and others involved in highly demanding missions.publishedVersio
    corecore