47,483 research outputs found

    Evaluation of battery models for prediction of electric vehicle range

    Get PDF
    Three analytical models for predicting electric vehicle battery output and the corresponding electric vehicle range for various driving cycles were evaluated. The models were used to predict output and range, and then compared with experimentally determined values determined by laboratory tests on batteries using discharge cycles identical to those encountered by an actual electric vehicle while on SAE cycles. Results indicate that the modified Hoxie model gave the best predictions with an accuracy of about 97 to 98% in the best cases and 86% in the worst case. A computer program was written to perform the lengthy iterative calculations required. The program and hardware used to automatically discharge the battery are described

    Characteristic polynomials in real Ginibre ensembles

    Get PDF
    We calculate the average of two characteristic polynomials for the real Ginibre ensemble of asymmetric random matrices, and its chiral counterpart. Considered as quadratic forms they determine a skew-symmetric kernel from which all complex eigenvalue correlations can be derived. Our results are obtained in a very simple fashion without going to an eigenvalue representation, and are completely new in the chiral case. They hold for Gaussian ensembles which are partly symmetric, with kernels given in terms of Hermite and Laguerre polynomials respectively, depending on an asymmetry parameter. This allows us to interpolate between the maximally asymmetric real Ginibre and the Gaussian Orthogonal Ensemble, as well as their chiral counterparts

    Pressure distribution in a hydrostatic bearing of multi-wells

    Get PDF
    Pressure distribution in hydrostatic bearing of multi-wells obtained by use of Navier-Stokes equation

    A Rule and Graph-Based Approach for Targeted Identity Resolution on Policing Data

    Get PDF
    In criminal records, intentional manipulation of data is prevalent to create ambiguous identity and mislead authorities. Registering data electronically can result in misspelled data, variations in naming order, case sensitive data and inconsistencies in abbreviations and terminology. Therefore, trying to obtain the true identity (or identities) of a suspect can be a challenge for law enforcement agencies. We have developed a targeted approach to identity resolution which uses a rule-based scoring system on physical and official identity attributes and a graph-based analysis on social identity attributes to interrogate policing data and resolve whether a specific target is using multiple identities. The approach has been tested on an anonymized policing dataset, used in the SPIRIT project, funded by the European Union’s Horizon 2020. The dataset contains four ‘known’ identities using a total of five false identities. 23 targets were inputted into the methodology with no knowledge of how many or which had false identities. The rule-based scoring system ranked four of the five false identities with the joint highest score for the relevant target name with the remaining false identity holding the joint second highest score for its target. Moreover, when using graph analysis, 51 suspected false identities were found for the 23 targets with four of the five false identities linked through the crimes they had been involved in. Therefore, an identity resolution approach using both a rule-based scoring system and graph analysis, could be effective in facilitating the investigation process for law enforcement agencies and assisting them in finding criminals using false identities

    Low-noise 1 THz niobium superconducting tunnel junction mixer with a normal metal tuning circuit

    Get PDF
    We describe a 1 THz quasioptical SIS mixer which uses a twin-slot antenna, an antireflection-coated silicon hyperhemispherical lens, Nb/Al-oxide/Nb tunnel junctions, and an aluminum normal-metal tuning circuit in a two-junction configuration. Since the mixer operates substantially above the gap frequency of niobium (nu >~ 2 Delta/h ~ 700 GHz), a normal metal is used in the tuning circuit in place of niobium to reduce the Ohmic loss. The frequency response of the device was measured using a Fourier transform spectrometer and agrees reasonably well with the theoretical prediction. At 1042 GHz, the uncorrected double-sideband receiver noise temperature is 840 K when the physical temperature of the mixer is 2.5 K. This is the first SIS mixer which outperforms GaAs Schottky diode mixers by a large margin at 1 THz

    Experimental Analysis of Algorithms for Coflow Scheduling

    Full text link
    Modern data centers face new scheduling challenges in optimizing job-level performance objectives, where a significant challenge is the scheduling of highly parallel data flows with a common performance goal (e.g., the shuffle operations in MapReduce applications). Chowdhury and Stoica introduced the coflow abstraction to capture these parallel communication patterns, and Chowdhury et al. proposed effective heuristics to schedule coflows efficiently. In our previous paper, we considered the strongly NP-hard problem of minimizing the total weighted completion time of coflows with release dates, and developed the first polynomial-time scheduling algorithms with O(1)-approximation ratios. In this paper, we carry out a comprehensive experimental analysis on a Facebook trace and extensive simulated instances to evaluate the practical performance of several algorithms for coflow scheduling, including the approximation algorithms developed in our previous paper. Our experiments suggest that simple algorithms provide effective approximations of the optimal, and that the performance of our approximation algorithms is relatively robust, near optimal, and always among the best compared with the other algorithms, in both the offline and online settings.Comment: 29 pages, 8 figures, 11 table

    Benzo[a]pyrene-induced DNA adducts and gene expression profiles in target and non-target organs for carcinogenesis in mice

    Get PDF
    Background: Gene expression changes induced by carcinogens may identify differences in molecular function between target and non-target organs. Target organs for benzo[a]pyrene (BaP) carcinogenicity in mice (lung, spleen and forestomach) and three non-target organs (liver, colon and glandular stomach) were investigated for DNA adducts by 32P-postlabelling, for gene expression changes by cDNA microarray and for miRNA expression changes by miRNA microarray after exposure of animals to BaP. Results: BaP-DNA adduct formation occurred in all six organs at levels that did not distinguish between target and non-target. cDNA microarray analysis showed a variety of genes modulated significantly by BaP in the six organs and the overall gene expression patterns were tissue specific. Gene ontology analysis also revealed that BaP-induced bioactivities were tissue specific; eight genes (Tubb5, Fos, Cdh1, Cyp1a1, Apc, Myc, Ctnnb1 and Cav) showed significant expression difference between three target and three non-target organs. Additionally, several gene expression changes, such as in Trp53 activation and Stat3 activity suggested some similarities in molecular mechanisms in two target organs (lung and spleen), which were not found in the other four organs. Changes in miRNA expression were generally tissue specific, involving, in total, 21/54 miRNAs significantly up- or down-regulated. Conclusions: Altogether, these findings showed that DNA adduct levels and early gene expression changes did not fully distinguish target from non-target organs. However, mechanisms related to early changes in p53, Stat3 and Wnt/β-catenin pathways may play roles in defining BaP organotropism

    Quenching of Impurity Spins at Cu/CuO Interfaces: An Antiferromagnetic Proximity Effect

    Full text link
    It is observed that the magnetoconductance of bilayer films of copper (Cu) and copper monoxide (CuO) has distinct features compared of that of Cu films on conventional band insulator substrates. We analyze the data above 2 K by the theory of weak antilocalization in two-dimensional metals and suggest that spin-flip scatterings by magnetic impurities inside Cu are suppressed in Cu/CuO samples. Plausibly the results imply a proximity effect of antiferromagnetism inside the Cu layer, which can be understood in the framework of Ruderman-Kittel-Kasuya-Yoshida (RKKY) interactions. The data below 1 K, which exhibit slow relaxation reminiscent of spin glass, are consistent with this interpretation.Comment: 6 pages, 4 figures, 2 tables. Added a supplementary materia

    Quasi-optical SIS mixers with normal metal tuning structures

    Get PDF
    We recently reported (1996) a quasi-optical SIS mixer which used Nb/Al-oxide/Nb tunnel junctions and a normal-metal (Al) tuning circuit to achieve an uncorrected receiver noise temperature of 840 K (DSB) at 1042 GHz. Here we present results on several different device designs, which together cover the 300-1200 GHz frequency range. The mixers utilize an antireflection-coated silicon hyper-hemispherical lens, a twin-slot antenna, and a two-junction tuning circuit. The broad-band frequency response was measured using Fourier transform spectrometry (FTS), and is in good agreement with model calculations. Heterodyne tests were carried out from 400 GHz up to 1040 GHz, and these measurements agree well with the FTS results and with calculations based on Tucker's theory (1985)
    • …
    corecore