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Abstract. We calculate the average of two characteristic polynomials for the

real Ginibre ensemble of asymmetric random matrices, and its chiral counterpart.

Considered as quadratic forms they determine a skew-symmetric kernel from which

all complex eigenvalue correlations can be derived. Our results are obtained in a very

simple fashion without going to an eigenvalue representation, and are completely new

in the chiral case. They hold for Gaussian ensembles which are partly symmetric, with

kernels given in terms of Hermite and Laguerre polynomials respectively, depending

on an asymmetry parameter. This allows us to interpolate between the maximally

asymmetric real Ginibre and the Gaussian Orthogonal Ensemble, as well as their chiral

counterparts.

PACS numbers: 02.10.Yn, 0250.-r, 0540.-a

1. Introduction

Random Matrix Theory is known to enjoy a wide range of applications in the physical

sciences and beyond. This remains true when the eigenvalues of the operator to

be described move into the complex plane. However, the ensemble that is perhaps

the most interesting of these, the real Ginibre ensemble [1] dealing with real-valued

asymmetric matrix entries, has turned out to be the most difficult. Possible applications

of these ensembles include neural networks [2], directed Quantum Chaos [3], Quantum

Chromodynamics [4], financial markets [5], and quantum information theory [6].

The mathematical difficulty in solving these ensembles is due to the fact that they

allow for combinations of both real and complex conjugate eigenvalue pairs, with their

characteristic equation having only real entries. Apart from results on the spectral

density [7, 8, 3] an eigenvalue representation [9, 10] was derived as a starting point for

studying systematically higher order eigenvalue correlation functions. Only very recently

was their Pfaffian structure explicitly revealed [11, 12], and the probability pN,k that an

N ×N matrix has exactly k real eigenvalues [11, 13] as well as all correlations for k = 0

were computed [13]. Finally the complete solution for all real and complex eigenvalue

correlations was achieved independently by three different groups [14, 15, 16, 17, 18].
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In this paper we will give a very simple derivation for the generating kernel of

all complex eigenvalue correlations in the general so called elliptic case, dealing with

partly symmetric matrices depending on an asymmetry parameter. We also present

new results for the chiral real Ginibre ensemble as a two-matrix model which has not

yet been considered.

In the next section we will explain the relation between the complex eigenvalue

density and characteristic polynomials. After defining the elliptic real Ginibre ensemble

and its new chiral extension we consider their corresponding results in two separate

sections 3 and 4. Our conclusions are presented in section 5.

2. The rôle of characteristic polynomials generating the kernel

We start with the simplest ensemble considered here, the real Ginibre ensemble at

maximal asymmetry. It is just given by a Gaussian measure in the space of real,

asymmetric N ×N matrices which is invariant under orthogonal transformations:

dµ(A) ≡
N
∏

i,j=1

(

dAij√
2π

)

exp

(

−1

2
A2

ij

)

≡ DA e−
1
2

Tr AAT

. (1)

The eigenvalues λi obey the equation det[λi − A] = 0, and thus are real or occur in

complex conjugate pairs. They enjoy the following ordered joint probability density

function (jpdf) [9, 10]

dµ(λ1, λ2, . . . , λN) = CN · dλ1 . . . dλN ·
N
∏

i<j

(λi − λj) ·
N
∏

k

f(λk) , (2)

with some positive definite weight function f(λk) = f(λ̄k) and a normalisation constant

CN . Here the eigenvalues are ordered as follows if they are real: λ1 > λ2 > . . . , if

they are complex: Reλ1 = Reλ2 > Reλ3 = Reλ4 > . . . , Imλ1 = −Imλ2 > 0, Imλ3 =

−Imλ4 > 0, . . . , and similarly if they are mixed (see also [18]).

This implies that the spectral density of complex eigenvalues of the N + 2

dimensional ensemble, which can be obtained by inserting a two-dimensional delta-

function in the complex plane, is proportional to

RC
N+2, 1(λ) ∝ i(λ− λ̄)f(λ)2〈det[λ−A] det[λ̄−A]〉N . (3)

The brackets mean the average over the ensemble (1) with the partition function

ZN ≡
∫

DA e−
1
2

Tr AAT

. There is an additional contribution to the total spectral density

from the real eigenvalues, which is obtained by inserting a delta-function on the real

axis, which we do not consider here. We are therefore led to consider the following

correlation of two characteristic polynomials of A ‡

FN(λ, γ) ≡ 〈det[λ− A] det[γ −A†]〉N ≡ Kβ=1
N (λ, γ)

λ− γ
with λ 6= γ . (4)

‡ The Hermitian conjugate is put here merely to stress the analogy to other ensembles discussed below,

as for real matrices det[AT ] = det[A].
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It determines the antisymmetric kernel Kβ=1
N (λ, γ), from which all correlation functions

of complex eigenvalues follow for even N . While the result for odd N is known in

the real Ginibre ensemble [18], very recently a general technique has been proposed for

obtaining the odd N result from even N by removing an eigenvalue [19]. The kernel in

eq. (4) has been derived in [14] using the Edelman result [10] for the density of complex

eigenvalues, and using eq.(3). Here we will give an independent derivation which makes

clear why the result is so simple, when the jpdf eq. (2) is so complicated.

The relation eq. (4) is far more general. Not only does it hold for the other real

Ginibre ensembles to be introduced below, but it also holds for other symmetry classes

with complex eigenvalues having unitary or symplectic invariance. For the quaternionic

Ginibre ensembles at β = 4 an identical relation to eq. (4) was shown in [20] to give

the skew-symmetric kernel. In the Ginibre ensembles with unitary symmetry β = 2 the

kernel is symmetric and the following modified, simpler relation is known to hold [21]

〈det[λ− A] det[γ − A†]〉N = Kβ=2
N (λ, γ) . (5)

The argument we just presented above for the real Ginibre ensemble at maximal

asymmetry can easily be translated to the partially symmetric case depending on an

asymmetry parameter τ . Here in the large-N limit the complex eigenvalues lie inside

an ellipse with axes ∼ (1± τ) [7]. It is known [9] that its jpdf is related to eq. (2) by a

simple rescaling of the eigenvalues, and we readily obtain

FN(λ, γ; τ) ≡ 〈det[λ− (S + vA)] det[γ − (S + vA)T ]〉N ≡ Kβ=1
N (λ, γ; τ)

λ− γ
, (6)

with

τ ∈ [0, 1] , v2 =
1 − τ

1 + τ
. (7)

The average is with respect to the following partition function

ZN ≡
∫

DS DA exp

[

− 1

2(1 + τ)
Tr(SST + AAT )

]

, (8)

and we consider the eigenvalues of the partly symmetric matrix J = S + vA. Here

S and A are N × N matrices being symmetric and antisymmetric respectively, with a

particular choice of variance. The limiting case τ = 0 brings us back to the ensemble

eq. (1) while setting τ = 1 would lead to the Gaussian Orthogonal Ensemble. However,

in that case the eigenvalues become real and this limit is subtle.

The second ensemble we consider in this paper is the chiral counterpart of the real

Ginibre ensemble. Following [4] and its extension to a two-matrix model [22] we define

the following chiral real Ginibre ensemble (ch) with a particular variance n,

Zch
N ≡

∫

DA DB exp
[

−n
2

Tr(AAT +BBT )
]

. (9)

Again we compute the average of characteristic polynomials to obtain the kernel,

F ch
N (λ, γ;µ) ≡ 〈det[λ−M ] det[γ −MT ]〉N ≡ Kch, β=1

N (λ, γ;µ)

λ2 − γ2
, (10)

M ≡
(

0 A + µB

−AT + µBT 0

)

. (11)
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Here both A and B are rectangular N × (N + ν) matrices without further symmetry

among the real matrix elements. They are drawn independently from the ensemble

(1) extended to ν ≥ 0. The asymmetry parameter is given here by µ ∈ [0, 1], where

µ = 1 denotes maximal asymmetry, and µ = 0 takes us back to the chiral Gaussian

Orthogonal Ensemble. In [4] initially a one-matrix model was proposed, replacing B

by the identity. Whilst we expect that in the large-N limit both lead to the same

universal result our choice allows for an eigenvalues basis, as in the corresponding chiral

extensions of Ginibre at β = 2 [22] and β = 4 [23], having complex and quaternion

real matrix elements, respectively. The ensemble in eq. (9) has not been solved before

and we will give a completely new result below, depending parametrically on ν. For

maximal asymmetry it corresponds to class 2P in [24] for real elements.

The 2N + ν eigenvalues λi of the matrix M defined in eq. (11) satisfy

0 = det[λ−M ] = λν det
[

λ2 − (A+ µB)(−AT + µBT )
]

. (12)

It will be shown elsewhere that the jpdf of these eigenvalues is again of the form in eq.

(2). From that it follows that the kernel derived from F ch
N (λ, γ;µ) again determines all

correlation functions of complex eigenvalues.

A peculiarity of the chiral ensemble is the following: the non-zero eigenvalues λ2
i

solving the second equation in (12) are real but not necessarily positive. Thus the

eigenvalues of M can have both real and purely imaginary eigenvalues as well as complex

conjugate eigenvalue pairs. Moreover, all non-zero eigenvalues come in ± pairs due to

the chirality of the matrix M .

3. Characteristic polynomials for the real Ginibre ensemble

For pedagogical reasons we begin with the maximally asymmetric case eq. (4). The

partly symmetric case at τ 6= 0 is given as a second example below.

FN(λ, γ) =
1

ZN

∫

DA e−
1
2
TrAAT

det[λ−A] det[γ − AT ] . (13)

Writing the determinants in terms of two N -dimensional complex Grassmann vectors

ηi and ζi, with i = 1, . . . , N , we obtain

FN(λ, γ) =
1

ZN

∫

DA

∫

dζ dη exp

[

−1

2
AijA

T
ji − λζ∗i ζi − γη∗i ηi + ζ∗i Aijζj + η∗jA

T
jiηi

]

=

∫

dζ dη exp

[

−λζ∗i ζi − γη∗i ηi +
1

2
(ζ∗i ζj + η∗j ηi)

2

]

, (14)

after integrating out the Gaussian matrix A. Here and in the following we will use

summation conventions over double indices. The last term in the exponent can be

written as
1

2
(ζ∗i ζj + η∗j ηi)(ζ

∗
i ζj + η∗j ηi) = ζ∗i ηi ζjη

∗
j . (15)
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With the help of a complex Hubbard-Stratonovich (HS) transformation we can

bilinearise and integrate out the Grassmann variables:

FN(λ, γ) =
1

π

∫

d2z

∫

dζ dη exp
[

−|z|2 − λζ∗i ζi − γη∗i ηi + zζiη
∗
i + z̄ζ∗i ηi

]

=
1

π

∫

d2z e−|z|2 (λγ + |z|2)N = N !
N
∑

n=0

(λγ)n

n!
. (16)

This gives a polynomial with leading power (λγ)N as expected. Thus our first main

result leads to the following antisymmetric kernel

K1
N(λ, γ) = (λ− γ) N !

N
∑

n=0

(λγ)n

n!
, (17)

which is enough to derive all complex correlation functions. On setting γ = λ̄ and

multiplying by the weight f(λ)2, Edelman’s complex density [8] in terms of an incomplete

exponential follows. It is remarkable that it only depends on |λ|2 while the jpdf eq. (2) is

not isotropic. We note that Edelman derived his result using methods from multivariate

statistics, and not from the jpdf.

We now turn to the partly symmetric case with τ ∈ [0, 1], where we can follow the

same path,

FN(λ, γ; τ) =
1

ZN

∫

DSDA e−
1

2(1+τ)
Tr(SST +AAT ) det[λ− (S + vA)] det[γ − (S + vA)T ]

=
1

ZN

∫

DSDA

∫

dζ dη exp
[

− 1

2(1 + τ)
(S2

ij − A2
ij) − λζ∗i ζi − γη∗i ηi

+ ζ∗i (Sij + vAij)ζj + η∗i (Sij − vAij)ηj

]

. (18)

After symmetrising and antisymmetrising the terms in the last line, e.g. ζ∗i Sijζj =
1
2
Sij(ζ

∗
i ζj + ζ∗j ζi), we can complete the squares in Sij and Aij respectively, and integrate

them out to obtain

FN(λ, γ; τ) =

∫

dζ dη exp
[

− λζ∗i ζi − γη∗i ηi − c2−((ζ∗i ζi)(ζ
∗
j ζj) + (η∗i ηi)(η

∗
j ηj))

− 2c2+η
∗
i ζ

∗
i ηjζj + 2c2−η

∗
i ζiηjζ

∗
j

]

. (19)

Here we have introduced the constants c2± ≡ 1
2
(1 + τ)(1± v2). The quartic terms in the

Grassmann variables can be rewritten using two real HS transformations for the first

line of eq. (19), and two complex ones for the second line:

FN(λ, γ; τ) =
1

π3

∫

dx dy

∫

d2z d2w

∫

dζ dη exp
[

− x2 − y2 − ζ∗j (λ+ 2ic−x)ζj

− η∗j (γ + 2ic−y)ηj − 2|z|2 − 2|w|2 + 2c+(z̄ηjζj − zη∗j ζj) − 2c−(w̄ηjζ
∗
j + wη∗j ζj)

]

=
1

π3

∫

dx dy

∫

d2z d2w exp
[

− x2 − y2 − 2|z|2 − 2|w|2
]

×
[

(λ+ 2ic−x)(γ + 2ic−y) + 4c2+|z|2 + 4c2−|w|2
]N

. (20)
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Expanding the last factor twice into binomial series in powers of |z|2 and |w|2 we can

apply the following integral representation of the Hermite polynomials:
(τ

2

)
k

2
Hk

(

λ√
2τ

)

=
1√
π

∫

dx e−x2
(

λ+ i
√

2τx
)k

, (21)

where using eq. (7) we have 2c− =
√

2τ . This eliminates the two real integrations.

After integrating out the two remaining complex variables z and w we finally arrive at

FN(λ, γ; τ) = N !

N
∑

l=0

τ l

l
∑

k=0

1

k! 2k
Hk

(

λ√
2τ

)

Hk

(

γ√
2τ

)

. (22)

As a check this is again a polynomial with leading order (λγ)N . Although our result eq.

(22) could be further simplified this form is most useful for obtaining the antisymmetric

kernel by applying the Christoffel-Darboux formula to the inner sum:

K1
N(λ, γ; τ) = N !

N
∑

l=0

1

l!

(τ

2

)l+ 1
2

(

Hl+1

(

γ√
2τ

)

Hl

(

λ√
2τ

)

− (γ ↔ λ)

)

. (23)

This coincides precisely with the kernel of skew-orthogonal Hermite polynomials derived

in [17] via the jpdf, which is much more elaborate. As was shown there independently,

this kernel generates all complex eigenvalue correlation functions of the partly symmetric

ensemble eq. (8) for even N , depending parametrically on τ .

A similar kernel given in terms of orthogonal (for β = 2) [25] or skew-orthogonal (for

β = 4) [26] Hermite polynomials is known for the partly symmetric Ginibre ensembles.

4. Characteristic polynomials for the chiral real Ginibre ensemble

In this section we present the calculation only for the partly symmetric case of the

chiral extension of the real Ginibre ensemble, depending on asymmetry parameter µ.

The simpler result at maximal asymmetry with µ = 1 is given at the end of this section.

F ch
N (λ, γ;µ) =

1

Zch
N

∫

DADB e−
n

2
Tr(AAT +BBT ) det

[

λ −(A+ µB)

−(AT − µBT ) λ

]

× det

[

γ −(A− µB)

−(AT + µBT ) γ

]

=
1

Zch
N

∫

DADB

∫

dηdψdζdϕ exp
[

− n

2
(A2

ia +B2
ia) − λ(η∗i ηi + ψ∗

aψa) − γ(ζ∗i ζi + ϕ∗
aϕa)

+ η∗i (Aia + µBia)ψa + ψ∗
a(A

T
ai − µBT

ai)ηi + ζ∗i (Aia − µBia)ϕa + ϕ∗
a(A

T
ai + µBT

ai)ζi

]

.(24)

Here we have written each determinant of size 2N+ν in terms of two Grassmann vectors,

ηi(ζi) and ψa(ϕa) of size N and N + ν, respectively. Our summation conventions imply

for i = 1, . . . , N , and for a = 1, . . . , N + ν. In addition to µ we have a parameter n for

the variance. After completing the square and integrating out the matrices A and B we
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obtain

F ch
N (λ, γ;µ) =

∫

dηdψdζdϕ exp
[

− λ(η∗i ηi + ψ∗
aψa) − γ(ζ∗i ζi + ϕ∗

aϕa)

+
1

2n
(η∗iψa − ηiψ

∗
a + ζ∗i ϕa − ζiϕ

∗
a)

2 +
µ2

2n
(η∗iψa + ηiψ

∗
a − ζ∗i ϕa − ζiϕ

∗
a)

2
]

. (25)

Multiplying out and collecting all nonzero terms we need 6 new complex integrations

to perform the HS transformations that bilinearise the Grassmann variables. We only

give the result obtained after performing all Grassmann integrations:

F ch
N (λ, γ;µ) =

1

π6

∫

d2u d2v d2w d2p d2q d2z e−|u|2−|v|2−|w|2−|p|2−|q|2−|z|2 (26)

×
(

(λ− iδ−u)(γ − iδ−v̄) − δ2
+wz + δ2

−pq
)N (

(λ− iδ−ū)(γ − iδ−v) − δ2
+w̄z̄ + δ2

−p̄q̄
)N+ν

,

where we have used the following abbreviations

δ2
± ≡ 1

n
(1 ± µ2) . (27)

Expanding the first factor in the second line of eq. (26) as

(λ̂ˆ̄γ − δ2
+wz + δ2

−pq)
N =

N
∑

l=0

(

N

l

)

(−δ2
+wz)

N−l

l
∑

k=0

(

l

k

)

(λ̂ˆ̄γ)k(δ2
−pq)

l−k , (28)

with λ̂ˆ̄γ = (λ− iδ−u)(γ− iδ−v̄), and likewise the second factor, we can use the following

orthogonality relation

1

π

∫

d2p e−|p|2pkp̄ l = δklk! . (29)

Applying this first to the integrations over variables p and q, and then to w and z we can

reduce the four sums to two. As a final step we employ the following complex integral

representation for Laguerre polynomials

1

π

∫

d2u e−|u|2(λ+ iu)k(λ+ iū)k+ν = k! (−)kλνLν
k(λ

2) . (30)

Whilst we did not find this representation in tables it can be easily verified from the

standard representation of generalised Laguerre polynomials

Lν
k(x) =

k
∑

m=0

(k + ν)!

(k −m)! (m+ ν)!m!
xm . (31)

Using the integral representation eq. (30) as well as its complex conjugate we finally

arrive at the following result:

F ch
N (λ, γ;µ) = N ! (N + ν)! δ4N

+ (λγ)ν

N
∑

l=0

(

δ−

δ+

)4l l
∑

k=0

k!

(k + ν)!
Lν

k

(

λ2

δ2
−

)

Lν
k

(

γ2

δ2
−

)

. (32)

It is a polynomial in λ and γ with the correct leading power (λγ)2N+ν . Looking back to

the definition of the antisymmetric kernel in our chiral case, eq. (10), we can read off the

following result, after using the Christoffel-Darboux formula for Laguerre polynomials:

Kch, 1
N (λ, γ;µ) = N ! (N + ν)! δ4N

+ (λγ)ν

×
N
∑

l=0

(

δ−

δ+

)4l
(l + 1)!

(l + ν)!
δ2
−

(

Lν
l+1

( γ

δ2
−

)

Lν
l

( λ

δ2
−

)

− (γ ↔ λ)

)

. (33)
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This gives our new kernel of the chiral real Ginibre ensemble, from which all its complex

eigenvalue correlations follow. In particular for γ = λ̄ it is proportional to a new complex

eigenvalue density as in eq. (3). It is similar to the corresponding expressions for the

kernel at β = 2 [22] and β = 4 [23], also given in terms of Laguerre polynomials in the

complex plane.

After dealing with the general case we can go to maximal asymmetry, by setting

µ = 1. In this limit only the leading power of the Laguerre polynomials contributes,

and we obtain

F ch
N (λ, γ;µ = 1) = N ! (N + ν)!

(

2

n

)4N

(λγ)ν

N
∑

k=0

1

k! (k + ν)!

(

n2λγ

4

)2k

(34)

for the characteristic polynomials, with limµ→1 δ
2
+ = 2

n
. For the corresponding kernel we

have to properly rescale with δ2
− and we obtain

lim
µ→1

δ2
−Kch, 1

N (λ, γ;µ) = N ! (N + ν)!

(

2

n

)4N

(λγ)ν(λ2 − γ2)
N
∑

l=0

1

l! (l + ν)!

(

n2λγ

4

)2l

. (35)

When setting γ = λ̄ and comparing to eq. (17) we again find a dependence on the

modulus only, despite the anisotropic jpdf. Here the incomplete exponential is replaced

by an incomplete modified I-Bessel function of the first kind.

5. Conclusions

We have calculated the expectation value of the product of two characteristic

polynomials with respect the following two Gaussian random matrix models: the partly

symmetric real Ginibre ensemble, and its chiral counterpart, a newly introduced two-

matrix model. In our calculation we have used the supersymmetric method, without

the need to explicitly go to an eigenvalue basis. In this simple way we can determine

a skew-symmetric kernel which is the main building block for all complex eigenvalue

correlation functions that can be written as Pfaffians. One could calculate this kernel

directly from the joint eigenvalue distribution (jpdf), but this turns out to be a very

difficult task.

This kernel is given by a sum over Hermite polynomials for the real Ginibre case,

depending on the asymmetry parameter. Here we have recovered a known, very recent

result. In the chiral real Ginibre ensemble we find a new kernel given in terms of

generalised Laguerre polynomials. In addition to the asymmetry µ it depends on the

parameter ν labelling the number of exact zero eigenvalues. Our method offers an

explanation of why the spectral density of complex eigenvalues is so simple, i.e. being

an incomplete exponential or I-Bessel function at maximal asymmetry, while the jpdf

is so complicated.

One possible application of our new chiral result would be in field theory for Dirac

operators with a real representation. The reason complex eigenvalues appear here is

due to a chemical potential µ of the quarks.
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It is an open question for the chiral ensemble if for all N the kernel also determines

the weight function f(λ), and if both ingredients (i.e. kernel and weight) determine all

correlation functions of real, complex and mixed eigenvalues. For the real Ginibre ensem-

ble this fact is known to hold, and the similarity in structure makes this very suggestive.
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[arXiv:chao-dyn/9802025].

[26] E. Kanzieper, J. Phys. A35, 6631 (2002) [arXiv:cond-mat/0109287].

http://arXiv.org/abs/cond-mat/9702091
http://arXiv.org/abs/hep-lat/9704007
http://arXiv.org/abs/math-ph/0507058
http://arXiv.org/abs/math-ph/0605006
http://arXiv.org/abs/math-ph/0703019
http://arXiv.org/abs/0706.1671
http://arXiv.org/abs/0706.2020
http://arXiv.org/abs/0706.2670
http://arXiv.org/abs/0805.2986
http://arXiv.org/abs/0806.0055
http://arXiv.org/abs/0806.2756
http://arXiv.org/abs/0809.5116
http://arXiv.org/abs/math-ph/0606060
http://arXiv.org/abs/hep-th/0212051
http://arXiv.org/abs/hep-th/0403131
http://arXiv.org/abs/hep-th/0507156
http://arXiv.org/abs/0707.0418
http://arXiv.org/abs/chao-dyn/9802025
http://arXiv.org/abs/cond-mat/0109287

	Introduction
	The rôle of characteristic polynomials generating the kernel
	Characteristic polynomials for the real Ginibre ensemble
	Characteristic polynomials for the chiral real Ginibre ensemble
	Conclusions

