Technical Memorandum No. 33-119

Pressure Distribution in a Hydrostatic Bearing of Multi-Wel/s

Sandra M. Barondess
Horace P. Phillips
Senol Utku

GPO PRICE $\$$ \qquad
CFSTI PRICE (S) $\$$ \qquad

Hard copy (HC) \qquad Microfiche (MF) , 50
ff 653 July 65

JET PROPULSION LABORATORY California institute of Technology

Pasadena. California
March 1, 1963

Technical Memorandum No. 33-119

Pressure Distribution in a
 Hydrostatic Bearing of Multi-Wel/s

Sandra M. Barondess
Horace P. Phillips
Senol Utku

R. Stevens, Chief Research Section

PASADENA, CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY JET PROPULSION LABORATORY

March 1, 1963

Copyright (c) 1963
 Jet Propulsion Laboratory
 California Institute of Technology

Prepared Under Contract No. NAS 7-100
National Aeronautics \& Space Administration

CONTENTS

I. Introduction 1
II. Formulation of the Problem 2
III. Formulation of Numerical Solution 3
IV. Results 6
Nomenclature 7
References 8
Appendix 9
Table I 9

FIGURES

1. Geometric parameters of the hydrostatic bearing pad and the wells 1
2. The finite difference grid 3
3. The finite difference operator associated with ∇^{2} 3
4. The coefficient matrix [Q] 3
5. The partitioning of the set of equations to obtain a quasi-tridiagonal coefficient matrix 4
6. The set of equations with quasi-tridiagonal coefficient matrix 4
7. The [L] and [U] matrices associated with [Q1 4
8. The flow chart of the program 5
9. Hydrostatic bearing configuration used in error and object time studies 6
10. Total thrust versus number of unknowns for the case shown in Fig. 9 (iterations only) 6
11. The object time versus number of unknowns for the case shown in Fig. 9 (iterations only) 6

26×1
 ABSTRACT

The Navier-Stokes equations are first specialized for very slow motion to obtain the equation governing the pressure distribution in the hydrostatic bearing. The resulting differential operator of the governing equation is the Laplacian. The solution domain is rectangular and contains two or three pairs of symmetrically located wells of rectangular shape. Any one of the wells may be considered to have unit pressure while the remaining wells and the outside boundaries of the pad have zero pressures. Since the system is completely linear, the pressure distribution on the pad with arbitrary well pressure combinations can be obtained by superposition.

The differential equation is solved numerically with the aid of a digital computer. The differential equation is converted to a set of linear simultaneous equations through a finite difference scheme. The coefficient matrix is tridiagonalized through suitable partitioning. Because of the quasi-tridiagonal property of this matrix, the solution is obtained by an upper-lower procedure. Since this procedure causes considerable round-off errors when applied to large sensitive systems, an optional iteration with single steps is provided. A machine object time study with reference to the grid size and number of iterations is included. The effect of truncation errors is demonstrated by producdion runs of a typical case with different grid sizes.

I. INTRODUCTION

This work was initiated to study the location of the pressure resultants in the hydrostatic bearings of the Advanced Antenna System for the NASA/JPL Deep Space Instrumentation Facility. The knowledge of the pressure distribution on the pad under different well pressure conditions is essential for an efficient and safe hydrostatic bearing design.

The wells and the pad of the hydrostatic bearing are assumed to be rectangular as shown in Fig. 1. The number of well pairs might be two or three. These distances, a, b, c, d, e, and f, are the geometrical parameters of the problem. The solution is given for the cases in which only one of the wells has unit pressure and all the remaining wells and the exterior boundaries of the pad have

Fig. 1. Geometric parameters of the hydrostatic bearing pad and the wells
zero pressures. Since the differential equation and the boundary conditions are linear, the pressure distribution on the pad for any arbitrary well pressures can be obtained by superposition, as follows.

Let $p_{j}(x, y), P_{j}, x_{j}$, and y_{j} be, respectively, the pressure distribution in the pad, the total thrust, the x and y coordinates of the point of action of the total thrust when the j th well has unit pressure. If α_{j} is the actual pressure in the j th well, then it follows that

$$
\begin{align*}
p(x, y) & =\sum_{j=1}^{N} \alpha_{j} p_{j}(x, y) \tag{1}\\
P & =\sum_{j=1}^{N} \alpha_{j} P_{j} \tag{2}\\
X & =\frac{\sum_{j=1}^{N} x_{j} P_{j} \alpha_{j}}{P} \tag{3}\\
Y & =\frac{\sum_{j=1}^{N} y_{j} P_{j} \alpha_{j}}{P} \tag{4}
\end{align*}
$$

where $p(x, y), P, X$, and Y are, respectively, the actual pressure distribution in the pad, the actual total thrust, the actual x and y coordinates of the point of action of the total thrust, and N is the total number of wells. A general purpose digital computer program is developed to give $p_{j}(x, y), P_{j}, x_{j}$, and y_{j} for any specified values of the geometric parameters.

II. FORMULATION OF THE PROBLEM

The general motion of a Newtonian fluid can be described by the Navier-Stokes equations (Ref. 1) which are

$$
\begin{align*}
\rho \frac{D u}{D t}= & \bar{X}-\frac{\partial p}{\partial x}+\frac{\partial}{\partial x}\left[\mu\left(2 \frac{\partial u}{\partial x}-\frac{2}{3} \operatorname{div} \mathbf{w}\right)\right] \\
& +\frac{\partial}{\partial y}\left[\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)\right]+\frac{\partial}{\partial z}\left[\mu\left(\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}\right)\right] \tag{5}\\
\rho \frac{D v}{D t}= & \bar{Y}-\frac{\partial p}{\partial y}+\frac{\partial}{\partial y}\left[\mu\left(2 \frac{\partial v}{\partial y}-\frac{2}{3} \operatorname{div} \mathbf{w}\right)\right] \\
& +\frac{\partial}{\partial z}\left[\mu\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right)\right]+\frac{\partial}{\partial x}\left[\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)\right] \tag{6}\\
\rho \frac{D w}{D t}= & \overline{\mathbf{Z}}-\frac{\partial p}{\partial z}+\frac{\partial}{\partial z}\left[\mu\left(2 \frac{\partial w}{\partial z}-\frac{2}{3} \operatorname{div} \mathbf{w}\right)\right] \\
+ & \frac{\partial}{\partial x}\left[\mu\left(\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}\right)\right]+\frac{\partial}{\partial y}\left[\mu\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right)\right] \tag{7}\\
& \frac{\partial \rho}{\partial t}+\frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho v)}{\partial y}+\frac{\partial(\rho w)}{\partial z}=0 \tag{8}
\end{align*}
$$

where the first three equations are the dynamic equilibrium equations, and the fourth one is the continuity equation. For very slow motion in the pad, the inertial and body forces in the equilibrium equations can be ignored. This yields

$$
\begin{equation*}
\operatorname{grad} p=\mu \nabla^{2} \mathbf{w} \tag{9}
\end{equation*}
$$

Assuming the fluid is incompressible, the continuity equation can be reduced to

$$
\begin{equation*}
\operatorname{div} \mathbf{w}=0 \tag{10}
\end{equation*}
$$

In scalar form, Eqs. (9 and 10) are

$$
\begin{align*}
& \frac{\partial p}{\partial x}=\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right) \tag{11a}\\
& \frac{\partial p}{\partial y}=\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right) \tag{11b}\\
& \frac{\partial p}{\partial z}=\mu\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right) \tag{11c}\\
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \tag{11d}
\end{align*}
$$

From Eqs. (9 and 10) one can eliminate w by first taking the divergence of both sides of Eq. (9) and then substituting Eq. (10) into it, as follows.

$$
\begin{align*}
\operatorname{div} \operatorname{grad} p & =\operatorname{div}\left[\mu \nabla^{2} \mathbf{w}\right] \tag{12}\\
\operatorname{div} \operatorname{grad} p & =\mu \nabla^{2}[\operatorname{div} \mathbf{w}] \tag{13}\\
\operatorname{div} \operatorname{grad} p & =0 \tag{14}
\end{align*}
$$

Eq. (14) is identical with

$$
\begin{equation*}
\nabla^{2} p=0 \tag{15}
\end{equation*}
$$

The problem reduces to the solution of the Laplacian in the solution domain shown in Fig. 1 with the prescribed boundary conditions. Since there is no flow in the z direction

$$
\begin{equation*}
\frac{\partial p}{\partial z}=0 \tag{16}
\end{equation*}
$$

Then

$$
\begin{equation*}
p=p(x, y) \tag{17}
\end{equation*}
$$

and the Laplacian operator in the chosen coordinate system is

$$
\begin{equation*}
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \tag{18}
\end{equation*}
$$

III. FORMULATION OF NUMERICAL SOLUTION

Equation (15) is solved by means of finite differences. In Fig. 2, the finite difference grid is shown. Assuming an $0\left(h^{2}\right)$ approximation, the difference operator corresponding to the Laplacian is as shown in Fig. 3. In this figure, the unknown mesh function is shown with the symbol $P_{i, j}$ where i is the row number and j the column number in the grid. The application of the difference operator on the unknown mesh function $P_{i, j}$ yields a set of simultaneous linear equations in the form

$$
\begin{equation*}
[Q]\{P\}=\{C\} \tag{19}
\end{equation*}
$$

Fig. 2. The finite difference grid
In any one row of the [Q] matrix, there are only five non-zero entries. Relabeling the $P_{i, j}$ terms with a single subscript counting column-wise in the grid, the [Q] matrix will assume the form shown in Fig. 4. Since the mesh function is known on the wells and on the boundaries of the pad, this information can suitably be imposed on [Q] as follows: (1) For the zero values of the $P_{i, j}$ on the exterior boundaries of the pad, the corresponding

Fig. 3. The finite difference operator associated with $\nabla^{\mathbf{2}}$
rows and columns of the augmented matrix are deleted; (2) For the values of the $P_{i, j}$ on the wells, the nondiagonal and diagonal entries of the corresponding rows of the augmented matrix are made respectively zero and one, and the entries of these rows corresponding to $\{C\}$ are made either one or zero depending upon whether the well carries unit or zero pressure, respectively. After this modification $[Q]$ is still a five diagonal matrix as shown in Fig. 4, which can be partitioned as in Fig. 5 to yield a quasi-tridiagonal matrix as in Fig. 6. The entries of the quasi-tridiagonal matrix are square submatrices of order two less than the number of rows in the grid, and the order of the tridiagonal partitioned matrix is two less than the number of columns in the grid. The equations shown in Fig. 6 are of the type of Eq. (19). An upper-lower procedure as summarized below can be used for solution (Ref. 2).

Fig. 4. The coefficient matrix [Q]
Any positive tridiagonal [Q] can be written as

$$
\begin{equation*}
[Q]=[L][U] \tag{20}
\end{equation*}
$$

where [L] and $[U]$ are as shown in Fig. 7. The $[R]$ and $[S]$ submatrices of $[L]$ and $[U]$, respectively, can be ex-
pressed in terms of the $[A]$ and $[B]$ submatrices of $[Q]$, yielding the following recursive formulas:

$$
\begin{align*}
{\left[\mathrm{S}_{1}\right] } & =\left[B_{1}\right] \tag{21}\\
{\left[R_{n}\right] } & =\left[\mathrm{S}_{n-1}\right]^{-1}\left[A_{n}\right] \tag{22}\\
{\left[S_{n}\right] } & =\left[B_{n}\right]-\left[S_{n-1}\right]^{-1}\left[A_{n}\right]\left[A_{n-1}\right] \tag{23}
\end{align*}
$$

Fig. 5. The partitioning of the set of equations to obtain a quasi-tridiagonal coefficient matrix

Fig. 6. The set of equations with quasi-tridiagonal coefficient matrix

Having defined [L] and [U], Eq. (19) can be written

$$
\begin{equation*}
[L]\{Y\}=\{C\} \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
\{Y\}=[U]\{P\} \tag{25}
\end{equation*}
$$

By means of a forward sweep, one can obtain the $\left\{Y_{n}\right\}$ from the formulas

Fig. 7. The [L] and [U] matrices associated with [Q]

$$
\begin{align*}
& \left\{Y_{1}\right\}=\left\{C_{1}\right\} \tag{26}\\
& \left\{Y_{n}\right\}=\left\{C_{n}\right\}-\left[R_{n}\right]\left\{Y_{n-1}\right\} \tag{27}
\end{align*}
$$

Having computed the $\left\{Y_{n}\right\}$, the $\left\{P_{n}\right\}$ are computed by a backward sweep from

$$
\begin{align*}
\left\{P_{n}\right\} & =\left[S_{n}\right]^{-1}\left\{Y_{n}\right\} \tag{28}\\
\left\{P_{n-1}\right\} & =\left[S_{n-1}\right]^{-1}\left\{\left\{Y_{n-1}\right\}-\left[A_{n-1}\right]\left\{P_{n}\right\}\right\} \tag{29}
\end{align*}
$$

When the number of unknowns $P_{i, j}$ is of the order of hundreds, the above upper-lower procedure would yield rather large round-off errors in sensitive systems. To improve the results obtained through this procedure, an iteration with single steps is applied (Ref. 3) using the above results as the initial estimate as described below.

By applying the finite difference operator illustrated in Fig. 3 on the mesh function $P_{i, j}$, one writes

$$
\begin{equation*}
P_{i, j}=\frac{P_{i-1}, j+P_{i+1, j}+\alpha^{2}\left(P_{i, j-1}+P_{i, j+1}\right)}{2\left(1+\alpha^{2}\right)} \tag{30}
\end{equation*}
$$

Equation (30) would be satisfied if the P_{i}, j 's were the true solutions of Eq. (19). For other cases, Eq. (30) can be rewritten as

$$
\begin{equation*}
P_{i, j}^{(s+1)}=\frac{P_{i-1, j}^{(s)}+P_{i+1, j}^{(s)}+\alpha^{2}\left(P_{i, j-1}^{(s)}+P_{i, j+1}^{(s)}\right)}{2\left(1+\alpha^{2}\right)} \tag{31}
\end{equation*}
$$

for an iteration scheme. In this equation, the superscript in parentheses indicates the number of iterations performed. The correction shown in Eq. (31) should be applied only to those grid points whose pressures are not known. The algorithm of the iteration is such that the grid points are swept in row (or column) sequence, always using the most recently obtained $P_{i,}$, 's.

A Fortran program was developed to perform the above procedures. The flow chart of the program is given in Fig. 8.

Fig. 8. The flow chart of the program

IV. RESULTS

In Fig. 9, a typical hydrostatic bearing used for the error and object time study is shown. In Fig. 10, thrust versus number of grid points is plotted, where the number of iteration sweeps is taken as a parameter. In Fig. 11, the object time versus number of grid points is plotted, where the number of iteration sweeps is taken as a parameter.

Several test runs indicated that the upper-lower procedure yields considerable round-off errors when the number of unknowns is greater than a few hundred. This is because of the sensitive character of the algebraic system. Therefore it is the authors' suggestion that the program should be run by by-passing the upper-lower procedure, in which case no tapes are necessary. The results given in Fig. 10 and 11 were obtained through iteration only.

Fig. 9. Hydrostatic bearing configuration used in error and object time studies

Fig. 10. Total thrust versus number of unknowns for the case shown in Fig. 9 (iterations only)

Fig. 11. The object time versus number of unknowns for the case shown in Fig. 9 (iterations only)

NOMENCLATURE

$\begin{aligned} & {[A],[B],\{C\}} \\ & a, b, c, d, e, f \end{aligned}$	Submatrices of the augmented matrix Geometrical parameters	u, v, w w	Components of velocity vector Velocity vector
D	Total derivative with respect to time	x, y	Cartesian coordinates
$\begin{aligned} & D t \\ & \operatorname{div} \mathbf{w} \end{aligned}$	$\boldsymbol{\nabla} \cdot \mathbf{w}$	$\boldsymbol{x}_{j}, y_{j}$	Coordinates of the point of action of $\boldsymbol{P}_{\boldsymbol{j}}$
$\operatorname{grad} p$	∇p	X, Y	Coordinates of the point of action of
[I]	Identity matrix		actual thrust
i, j, k	Unit vectors of the cartesian coordinate system	$\begin{gathered} \bar{X}, \bar{Y}, \bar{Z} \\ \{Y\} \end{gathered}$	Components of body force Auxiliary solution vector
[L], [U]	Lower and upper matrices of [Q]	$\boldsymbol{\alpha}$	$\Delta y / \Delta x$, mesh size ratio
N	Number of wells in the pad	α_{j}	Actual pressure in the j th well
$p, p(x, y), p_{j}(x, y)$	Pressure, actual pressure function, and pressure function caused by j th well alone	$\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial t}$	Partial derivative operators
$\boldsymbol{P}, \mathrm{P}_{\boldsymbol{j}}$	Actual total thrust and total thrust caused when j th well is pressurized	μ	Mass per unit volume Viscosity
[Q]	Coefficient matrix	∇	Del operator
[R], [S]	Submatrices of [L] and [U]	∇^{2}	Laplacian operator

REFERENCES

1. Schlichting, Hermann, Boundary Layer Theory, McGraw-Hill Book Company, Inc., 1955.
2. Schechter, S., "Quasi-tridiagonal Matrices and Type-insensitive Equations," New York University, Applied Mathematics Center Report TID-4500, May 1959.
3. Crandall, Stephen H., Engineering Analysis, McGraw-Hill Book Company, Inc., 1956.

APPENDIX

The program, written in Fortran for IBM 7090, can be run for grids not larger than 50×150. The number of grid intervals corresponding to the geometric parameters shown in Fig. 1 can be assigned any non-zero, positive integer value compatible with the above limits. The hydrostatic bearing may have two or three pairs of wells. Any one of the wells may be specified to have unit pressure. Iteration with single steps may or may not be requested. When iteration is requested, the number of iterations must be specified.

The input of the program should be compatible with the Fortran statements:

READ INPUT TAPE 5, 1, IA, IB, IC, ID, IE, IF, IM, IPW, ITI, ITO, ITS, AL
READ INPUT TAPE 5, 11, KMAX, IPUNCH, KM, PL
1 FORMAT (1116, F6.3)
11 FORMAT (316, F15.5)

where the symbols are explained in Table 1. The listing of the Fortran program is given on the following pages.

Table 1. Explanation of symbols appearing in inpuf statements

1A	Number of grid intervals in a well in y-direction. $a=\mathbb{A} \Delta y$, $1 A>1$
IB	Number of grid infervals between a well and the nearby outside boundary of pad in \boldsymbol{y}-direction. $b=I B^{*} \Delta y$, IB >1
IC	Number of grid intervals between two neighboring wells in y-direction. $c=I C^{*} \Delta y, I C>1$
ID	Number of grid infervals in a well in x-direction. $d=I D * \Delta x$, ID >1
IE	Number of grid intervals between a well and the nearby outside boundary of pad in x-direction. $e=I E * \Delta x, I E>1$
IF	Number of grid intervals between two neighboring wells in x-direction. $f=$ IF* Δx, If >1
IM	Number of well pairs lor number of wells in a row in x-direction). $2 \leq 1 M \leq 3$
IPW	The number of the well which has unit pressure. This number should be obtained by counting the wells row-wise. For example, for the pressurized well in Fig. $9 \mathrm{IPW}=3$.
ITI	Logical number of a binary tape used by upper-lower procedure.
ITS	Logical number of a binary tape used by upper-lower procedure.
170	Logical number of a binary tape used by upper-lower procedure.
KMAX	An indicator for method of solution. If $\operatorname{KMAX}=1$, the program is requested to do iteration only; otherwise, it will first apply upper-iower procedure.
IPUNCH	An indicator for punched output. If IPUNCH $=1$, the program also produces punched output; otherwise, it deletes the punched output.

\qquad

```
* LIST8
* LABEL
C SOLUTION OF LAPLACIAN FOR HYDROSTATIC BEARING
        DIMENSION A(50,50),B(50,50),C(50),A1(50,50),B1(50,50),C1(50)
    1,P(50,150)
        COMMON IA,IB,IC,ID,IE,IF,IM,IPW,AL,IH,IV,BETA,IH2,IV2,ITI,ITO,ITS,
    IA,B,C,A1,Bl,Cl,P
    READ INPUT TAPE 5,I,IA,IB,IC,ID,IE,IF,IM,IPW,ITI,ITO,ITS,AL
    READ INPUT TAPE 5,11,KMAX,IPUNCH, KM,PL
    IH=2*(IA+IB)+IC+1
    IV=2*IE+(IM-I)*IF+IM*ID+I
    FIV=IV-1
    DX=PL/FIV
    DY=DX*AL
    WRITE OUTPUT TAPE 6,2,DX,DY,IA,IB,IC,ID,IE,IF,IM,IPW
    WRITE OUTPUT TAPE 6,12,PL
    IH2=IH-2
    IV2=IV-2
    IF (KMAX-1) 23,7999,23
23 WRITE OUTPUT TAPE 6,7.KM
7 FORMAT ( 36H1THE PROGRAM IS REQUESTED TO PERFORM,IT, 3X, 4OH ITERAT
    1IONS AFTER UPPER LOWER PROCEDURE.)
    LFF=IE
    LFS=IE+ID+1
    LSF=LFS+IF-1
    LSS=LSF+1D+1
    IF(IM-2)25,25,26
26 LTF=LSS+IF-1
    LTS=LTF+ID+1
25 BETA=-2.*(1.+AL*AL)
    REWIND ITI
    REWIND ITO
    REWIND ITS
    LI=IB-I
    L2=IA+IB+1
    L 3 = IA +IB+IC-1
    L4=IA+IB+IC+I A +I
    DO 30 I=1,IH2
    C(I)=0.
    C1(I)=0.
    DO 29 J=1,IH2
    A(I,J)=0.
    B(I,J)=0.
    Al(I,J)=0.
    B1(I,J)=0.
29 CONTINUE
30 CONT INUE
    DO 40 I=1,IH2
    A(I,I)=AL*AL
    B(I,I)=BETA
    IF(I-1)40,35,32
32 IF (IH2-I) 40,36,34
```

```
    36 B(1.I-1)=1.
    GO TO 40
35 B(I, I+1)=1.
    GO TO 40
34 B(1,1-1)=1.
    GO TO 35
    4O CONYINUE
    DO 100 I=1.IV2
    IF (I-LFS) 52,51,51
52 IF (I-LFF)65,54,54
51 1F (I-LSF)65,57,57
57 IF (I-LSS)58,59,59
59 IF (IM-2)65,65,61
61 1F (I-LTF)65,63,63
63 IF (I-LTS)64,65,65
65 WRITE TAPE ITI, ((A(M,N),B(M,N),N=1,IH2),C(M),M=1,IH2)
    GO TO 100
    54 ITCH=1
    GO TO }7
    5 8 ~ I T C H = 2
        GO TO }7
64 ITCH=3
    75 DO 90 K=1,1H2
        IF (K-L1)80,80,77
    77 IF (K-L2)78,79,79
    79 IF (K-L3)80,80,81
81 IF (K-L4) 89,80,80
78 IF (ITCH-IPW) 82,83,82
89 IF (ITCH+IM-IPW) 82,83,82
82 Cl(K)=C(K)
    GO TO 84
83 Cl(K)=1.
84 A1(K,K)=0.
    Bl(K,K)=1.
    GO TO 90
    80 Al(K,K)=A(K,K)
        IF (K-1)85,85,86
    86 IF (IH2-K)100,87,88
    85 B1(1,1)=BETA
    B1(1,2)=1.
    GO TO 90
    88 B1(K,K-1)=B(K,K-1)
    B1(K,K)=B(K,K)
    B1(K,K+1)=B(K,K+1)
    GO TO 90
    87 B1(K,K-1)=B(K,K-1)
    Bl(K,K)=BETA
    90 CONTINUE
```



```
        DO 95 M=1,IH2
        Cl(M)=0.
        DO 94 N=1,IH2
```

\qquad

```
        Al(M,N)=0.
    94 B1(M,N)=0.
    95 CONTINUE
100 CONTINUE
    REWIND ITI
    CALL MITSUB
    REWIND ITO
    OO 110 I=1,IH
    0O 110 J=1,IV
110 P(I,J)=0.
    DO 120 J=1,IV2
    JJ=IV2-J+1
    READ TAPE ITO, (P(I+1,JJ+1),I=1,IH2)
    120 CONTINUE
    GO TO 7998
7999 WRITE OUTPUT TAPE 6,8,KM
8 FORMAT I 36HITHE PROGRAM IS REQUESTED TO PERFORM,I7,3X,17H ITERATI
    IONS ONLY.)
7998 IF (IPW-IM) 6102,6102,6101
6102 IPC=2*IPW-1
    GO TO 6103
6101 IPC=2*(IPW-IM)
6103 K=0
    JI=IE+1
    J=JI+1D
6888 11=1B+1
    IL=II+IA
    IF (K+1-IPC) 6000,6999,6000
6000 DO 6001 I=II,IL
    DO 6001 J=JI,JL
6001 P(I,J)=0.
    GO TO 6003
6 9 9 9 ~ D O ~ 6 0 0 2 ~ I = I I , I L ~
    DO 6002 J=JI,JL
6002 P(I,J)=1.
6 0 0 3 ~ K = K + 1
    GO TO (6100,6200,6100,6400,6100,6600),g
6100 II=IL+IC
    IL=II+IA
    IF (K+1-IPC) 6000,6999,6000
6200 JI= JL+1F
    JL=JI+ID
    GO TO 6888
6400 IF (IM-2) 6200,6600,6200
6600 ALL=AL*AL
    SAND=2.*(1.+ALL)
    IHI=IH-1
    IVI=IV-1
    IF (KM) 6601,8808,6601
6601 DO 351 K=1,KM
    K=K
    SENSE LIGHT 1
    L=1
```

```
8000 GO TO \((8100,8200,8300,8400,8500,8600,8700,350), \mathrm{L}\)
8100 1I =2
    \(I L=I B\)
    \(J I=2\)
    \(J=1 V 1\)
    GO TO 8900
8200 II \(=11+1 B+1 A\)
    \(I L=I L+I A+I C\)
    GO TO 8900
8300 IIIII+IC+IA
    \(I L=I L+I A+I B\)
    GO TO 8900
8400 JI=2
    \(J L=I E\)
    II =2
    \(1 \mathrm{~L}=\mathrm{IH} \mathrm{H}\)
    GO TO 8900
\(8500 \mathrm{JI}=\mathrm{JI}+\mathrm{IE}+1 \mathrm{D}\)
    \(J L=J L+I D+I F\)
    GO TO 8900
\(8600 \mathrm{JI}=\mathrm{JI}+\mathrm{IF}+\mathrm{ID}\)
    \(\mathrm{JL}=\mathrm{JL}+\mathrm{ID}+\mathrm{IF}\)
    GO TO 8900
\(8700 \mathrm{JI}=\mathrm{JI}+1 \mathrm{~F}+10\)
    \(J L=J L+I D+I E\)
    GO TO 8900
8900 DO 8950 I=II.IL
    DO 8950 J=JI,JL
    P(I,J) \(=(P(I-1, J)+P(I+1, J)+A L L *(P(I, J-1)+P(I, J+1)) / S A N D\)
8950 CONTINUE
    \(L=L+1\)
    IF (L-6) 8806,8805,8806
8805 IF (IM-2) 8806,8804,8806
\(8804 L=L+1\)
8806 GO TO 8000
    350 CONTINUE
    351 CONTINUE
8808 PSS \(=0\).
    \(P X M=0\).
    \(P Y M=0\).
    DO \(150 \mathrm{I}=1, \mathrm{IH}\)
    DO \(150 \mathrm{~J}=1\), IV2
    FI \(=1\)
    \(F J=J\)
    \(P S S=P S S+P(I+1, J+1) * A L\)
    \(P X M=P X M+P(1+1, J+1) * A L * F I * A L\)
    \(P Y M=P Y M+P(I+1, J+1) * A L * F J\)
    150 CONTINUE
    PSS=PSS*DX**2
    PXM=PXM*DX**3
    PYM=PYM*DX**3
    DO \(200 \mathrm{~K}=1,1 \mathrm{~V}, 10\)
```

```
    JB=K
    JE=JB+9
    IF (JE-IV) 190,190,201
190 WRITE OUTPUT TAPE 6,3,JB,JE,((P(I,J),J=JB,JE),I=1,IH )
200 CONTINUE
201 DO 202 K=JB,IV
202 WRITE OUTPUT TAPE 6,4,K,(P(I,K),I=1,IH )
    IF IIPUNCH - 1) 220,210,220
210 WRITE OUTPUT TAPE 7,5,IA,IB,IC,ID,IE,IF,IM,IPW,AL,DX,DY,((P(I,J),J
    I=I,IVI,I=I,IHI
220 WRITE OUTPUY TAPE 6,6,PSS,PXM,PYM
            CALL EXIT
    1 FORMAT (11I6,F6.3)
    2 ~ F O R M A T ~ I ~ 9 8 H I S O L U T I O N ~ O F ~ L A P L A C I A N ~ F O R ~ H Y D R O S T A T I C ~ B E A R I N G ~
        IUTKU-BARONDESS COMMUNICATIONS RESEARCH JPL,/////, 3H DX,71X,1H=,
        2F13.6 ,/,3H DY,71X,1H=,F13.6,/,11H WELL WIDTH,63X,1H=,I6,5H *DY
        3,/,39H BORDER WIDTH IN DIRECTION OF WELL PAIR,35X,IH=,16,5H *DY,/
        4,37H DISTANCE BETWEEN THE WELLS IN A PAIR,37X,IH*,I6,5H *DY,/ ,12
        5H WELL LENGTH,62X,1H=,I6,5H *DX,/,53H BORDER WIDTH IN DIRECTION P
        6ERPENDICULAR TO WELL PAIR,2IX,IH=,16,5H *DX,/,6IH DISTANCE BETWEE
        7N THE WELLS OF ANY TWO CONSECUTIVE WIELL PAIRS,13X,1H=,16,5H *DX,/
        8,21H NUMBER OF WELL PAIRS,53X, 1H=,16, 1,52H NUMBER OF WELL
        9 WITH UNIT PRESSURE, COUNTED ROW-WISE, 22X,1H=,161
    3 FORMAT ( 24HIPRESSURE MATRIX COLUMNS, I 10,5X,7HTHROUGH, I10,/////,
        1(1OF12.8))
    4 FORMAT (25HIPRESSURE MATRIX COLUMN ,I10./////,(F12.8))
    5 FORMAT (8I6,3F8.5,/,(7F10.8))
    6 FORMAT (16HITOTAL THPUST IS,F20.6.//,51H STATIC MOMENT ABOUT THE T
        1OP EDGE OF THE BEARING IS,F20.6,//,52H STATIC MOMENT ABOUT THE LEF
        2T EDGE OF THE BEARING IS,F20.6)
11 FORMAT (3I6,F15.5)
12 FORMAT (/////,22H THE LENGTH OF THE PAD,F2C.3)
        END
```

```
        LABEL
        LIST8
        SUBROUTINE MITSUB
        DIMENSION AP(50,50),AB(50,50),SP(50,50),SB(50,50),YP(50),YB(50),VP
    1(50),VB(50),RHS(50),P(50)
    COMMON IA,IB,IC,ID,IE,IF,IM,IPW,AL,IH,IV,BETA,IH2,IVZ,ITI,ITO,ITS,
    IAP,AB,SP,SB,YP,YB,VP,VB,PHS,D,P
    READ TAPE ITI,((AB(I,J),SB(I,J),J=1,IH2),YB(I),I=1,IH2)
    M=1
    CALL MATIS (SB,IH2,RHS,M,D,SP)
    IF (D) 20,1000,20
    20 WRITE TAPE ITS,((SP(I,J),AB(I,J),J=1,IH2),YB(I),I=1,IH2)
    DO 25 I=1,IH2
    DO 25 J=1,IH2
25 SB(I,J)=SP(I,J)
    IH21=1H2-1
    IV2I=IV2-1
    DO 100 L=1,IV21
    READ TAPE ITI,((AP(I,J),SP(I,J),J=1,IH2),YP(I),I=1,IH2)
    DO 30 I =1,1H2
    DO 28 K=1,IH2
    P(K)=0.
    DO 27 J=1.IH2
27 P(K)=P(K)+SB(I,J)*AP(J,K)
28 CONTINUE
    DO 29 J=1,1H2
29 SB(I,J)=P(J)
30 CONTINUE
    DO 40 1=1,1H2
    DO 38 K=1,1H2
    P(K)=0.
    DO 37 J=1,1H2
37P(K)=P(K)+SB(I,J)*AB(J,K)
38 CONTINUE
    DO 39 J=1,IH2
39 SP(I,J)=SP(I,J)-P(!)
4 0 ~ C O N T I N U E ~
    CALL MATIS (SP,IH2,RHS,M,D,AB)
    IF (D) 45,1001,45
4 5 ~ D O ~ 5 0 ~ I = 1 , 1 H 2
    DY=0.
    DO 49 J=1,IH2
49 DY=DY+SB(I,J)*YB(J)
50 YP(I)=YP(1)-DY
    WRITE TAPE ITS,((AB(I,J),AP(I,J),J=1,IH2),YP(I),I=1,IH2)
    DO 70 I =1.IH2
    DO 70 J=1,IH2
70 SB(I.J)=AB(I,J)
    DO 60 l=1,IH2
    YB(I)=YP(1)
    DO 59 J=1,IH2
```

\qquad

```
    59 AB(I,J)=AP(I,J)
    60 CONTINUE
    100 CONTINUE
    DO 110 I=1,1H2
    DO 105 K=1,IH2
105 YP(I)=SB(I,K)*YB(K)
110 CONTINUE
    WRITE TAPE ITO,(YP(I),I=1,IH2)
    BACKSPACE ITS
    DO 200 L=1,IV21
    BACKSPACE ITS
    READ TAPE ITS,((SB(I,J),AB(I,J),J=1,IH2),YB(I),I=1,IH2)
    DO 210 I=1,IH2
    DY=0.
    DO 209 K=1,IH2
209 DY=DY+AB(I,K)*YP(K)
    210 YB(I)=YB(I)-DY
    DO 220 I=1.IH2
    YP(1)=0.
    DO 219 K=1.IH2
    219 YP(I)=YP(I)+SB(I,K)*YB(K)
    220 CONTINUE
    WRITE TAPE ITO, (YP(I),I=1,IHZ)
    BACKSPACE ITS
    200 CONTINUE
    RETURN
1000 WRITE OUTPUT TAPE 6,10
    GO TO 2000
1001 LL =L+1
    WRITE OUTPUT TAPE 6,11,LL
2000 CALL EXIT
10 FORMAT (6OHITHE FIRST DIAGONAL SUBMATRIX IS SINGULAR. SOLUTION DEL
        IETED.)
11 FORMAT (23HITHE DIAGONAL SUBMATRIX,I10,31H IS SINGULAR. SOLUTION D
    IELETED.)
    END
```

```
- LABEL
    LIST8
    FAP
                        SUBROUTINE MATIS
                            THIS SUBROUTINE IS IDENTICAL WITH MATIV ON JPL LIBRARY
                            TAPE (AUGUST 1962) WHICH IS REASSEMBLED FOR 50X50 ARRAY.
                                    MATRIX INVERSION
                                    MATIS &X
                            MATIS
                            SUBROUTINE MATIS (A,N,B,M,DETERM,C)
                            THIS SUBROUTINE SAVES MATRTX A
MATIS SXD BOY,4
            CLA 1,4
            ADD ONE
            STA 2
            CLA 2,4
            STO 22+2
            CLA 3.4
            STO 2Z+3
            CLA 4,4
            STO 2Z+4
            CLA 5,4
            STO 2Z+5
            CLA 6,4
            STO ZZ+1
            ADD ONE
            STA Y
            AXT 2500,4
            Z C:A *,4
            Y STO *,4
            TlX *-2,4,1
            22 CALL MATIN
            TSX *
            TSX *
            TSX *
            TSX *
            TSX *
            LXD BOY,4
            TRA 7.4
ONE DEC 1
BOY
END
```

```
    SUBROUTINE MATIN (A,N,B,M,DETERM)
    LABEL
    LIST8
    THIS SUBROUTINE IS IDENTICAL WITH MATINV ON JPL LIBRARY TAPE
    (AUGUST 1962) WHICH IS RECOMPILED DELETING COMMON STATEMENT AND
    CHANGING DIMENSION STATEMENT FOR 50X50 ARRAYS.
        MATRIX INVERSION WITH ACCOMPANYING SOLUTION OF LINEAR EQUATIONS
        DIMENSION IPIVOT(50),A(50,50),B(50,1),INDEX(50,2),PIVOT(50)
        EQUIVALENCE (IROW,JROW), (ICOLUM,JCOLUM), (AMAX, T, SWAP)
    INITIALIZATION
    10 DETERM=1.0
    15 DO 20 J=1,N
    20 IPIVOT(J)=0
    30 DO 550 I=1,N
    SEARCH FOR PIVOT ELEMENT
        40 AMAX=0.0
        45 DO 105 J=1,N
        50 IF (IPIVOT(J)-1) 60, 105, 60
        60 DO 100 K=1,N
        70 IF (IPIVOT(K)=1) 80, 100, 740
        80 IF (ABSF(AMAX)-ABSF(A(J,K))) 85, 100, 100
        8 5 ~ I R O W = J ~
        90 I COLUM=K
        95 AMAX=A(J,K)
    100 CONTINUE
    105 CONTINUE
    110 IPIVOT(ICOLUM)=IPIVOT(ICOLUM)+1
C
C
C
    INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL
130 1F (IROW-ICOLUM) 140, 260, 140
140 DETERM=-DETERM
150 DO 200 L=1,N
160 SWAP=A(IROW,L)
170 A(IROW,L)=A(ICOLUM,L)
200 A(ICOLUM,L)=SWAP
205 IF(M) 260, 260, 210
210 DO 250 L=1, M
220 SWAP=B(IROW,L)
230 B(IROW,L)=B(ICOLUM,L)
250 B(ICOLUM,L)=SWAP
260 INDEX(I,`)=IROW
270 INDEX(1,2)=1COLUM
310 PIVOT(I)=A(ICOLUM,ICOLUM)
320 DETERM=DETERM*PIVOT(I)
```

```
C DIVIDE PIVOT ROW BY PIVOT ELEMENT
C
    330 A(ICOLUM.ICOLUM)=1.0
    340 DO 350 L=1,N
    350 A(ICOLUM,L)=A(ICOLUM,LI/PIVOT(I)
    355 IF(M) 380, 380, 360
    360 DO 370 L=1,M
    370 B(ICOLUM,L)=B(ICOLUM,L)/PIVOT(I)
C
C REDUCE NON-PIVOT ROWS
C
    380 DO 550 Ll=1,N
    390 IF(LI-ICOLUM) 400. 550,400
    400 T=A(LI,ICOLUM)
    420 A(LI,I (OLUM) =0.0
    4 3 0 ~ D O ~ 4 5 0 ~ L = 1 , N
    450 A(Ll,L)=A(LI,L)-A(ICOLUM,L)*T
    455 IF(M) 550, 550, 460
    460 DO 500 L=1,M
    500 B(LI,L)=B(LI,L)-B(ICOLUM,L)*T
    550 CONTINUE
C
C INTERCHANGE COLUMNS
C
    600 DO 710 I=1,N
    610 L=N+1-I
    620 IF (INDEX(L,1)-INDEX(L,2)I 630. 710. 630
    630 JROW=INDEX(L,1)
    6 4 0 ~ J C O L U M = I N D E X ( L , 2 ) ~
    6 5 0 ~ D O ~ 7 0 5 ~ K = 1 \& N ~
    6 6 0 ~ S W A P = A ( K , J R O W )
    670 A(K,JROW)=A(K,JCOLUM)
    700 A(K,JCOLUM)=SWAP
    705 CONTINUE
    710 CONTINUE
    740 RETURN
```

