1,356 research outputs found

    Approximating the Distribution of the Median and other Robust Estimators on Uncertain Data

    Get PDF
    Robust estimators, like the median of a point set, are important for data analysis in the presence of outliers. We study robust estimators for locationally uncertain points with discrete distributions. That is, each point in a data set has a discrete probability distribution describing its location. The probabilistic nature of uncertain data makes it challenging to compute such estimators, since the true value of the estimator is now described by a distribution rather than a single point. We show how to construct and estimate the distribution of the median of a point set. Building the approximate support of the distribution takes near-linear time, and assigning probability to that support takes quadratic time. We also develop a general approximation technique for distributions of robust estimators with respect to ranges with bounded VC dimension. This includes the geometric median for high dimensions and the Siegel estimator for linear regression.Comment: Full version of a paper to appear at SoCG 201

    Biological Assessments of Six Selected Fishes, Amphibians, and Mussels in Illinois

    Get PDF
    ID: 8758; issued November 1, 1996INHS Technical Report prepared for Illinois Department of Natural Resources, Division of Natural Heritag

    Ecosystem service provision by road verges

    Get PDF
    1. Roads form a vast, rapidly growing global network that has diverse, detrimental ecological impacts. However, the habitats that border roads (‘road verges’) form a parallel network that might help mitigate these impacts and provide additional benefits (ecosystem services; ES). 2. We evaluate the capacity of road verges to provide ES by reviewing existing research and considering their relevant characteristics: area, connectivity, shape, and contextual ES supply and demand. We consider the present situation, and how this is likely to change based on future projections for growth in road extent, traffic densities and urban populations. 3. Road verges not only provide a wide range of ES, including biodiversity provision, regulating services (e.g. air and water filtration) and cultural services (e.g. health and aesthetic benefits by providing access to nature) but also displace other habitats and provide ecosystem disservices (e.g. plant allergens and damage to infrastructure). Globally, road verges may currently cover 270,000 km2 and store 0.015 Gt C/year, which will further increase with 70% projected growth in the global road network. 4. Road verges are well placed to mitigate traffic pollution and address demand for ES in surrounding ES‐impoverished landscapes, thereby improving human health and well‐being in urban areas, and improving agricultural production and sustainability in farmland. Demand for ES provided by road verges will likely increase due to projected growth in traffic densities and urban populations, though traffic pollution will be reduced by technological advances (e.g. electric vehicles). Road verges form a highly connected network, which may enhance ES provision but facilitate the dispersal of invasive species and increase vehicle–wildlife collisions. 5. Synthesis and applications. Road verges offer a significant opportunity to mitigate the negative ecological effects of roads and to address demand for ecosystem services (ES) in urban and agricultural landscapes. Their capacity to provide ES might be enhanced considerably if they were strategically designed and managed for environmental outcomes, namely by optimizing the selection, position and management of plant species and habitats. Specific opportunities include reducing mowing frequencies and planting trees in large verges. Road verge management for ES must consider safety guidelines, financial costs and ecosystem disservices, but is likely to provide long‐term financial returns if environmental benefits are considered

    Fixing the U-band photometry of Type Ia supernovae

    Get PDF
    We present previously unpublished photometry of supernovae 2003gs and 2003hv. Using spectroscopically-derived corrections to the U-band photometry, we reconcile U-band light curves made from imagery with the Cerro Tololo 0.9-m, 1.3-m and Las Campanas 1-m telescopes. Previously, such light curves showed a 0.4 mag spread at one month after maximum light. This gives us hope that a set of corrected ultraviolet light curves of nearby objects can contribute to the full utilization of rest frame U-band data of supernovae at redshift ~0.3 to 0.8. As pointed out recently by Kessler et al. in the context of the Sloan Digital Sky Survey supernova search, if we take the published U-band photometry of nearby Type Ia supernovae at face value, there is a 0.12 mag U-band anomaly in the distance moduli of higher redshift objects. This anomaly led the Sloan survey to eliminate from their analyses all photometry obtained in the rest frame U-band. The Supernova Legacy Survey eliminated observer frame U-band photometry, which is to say nearby objects observed in the U-band, but they used photometry of high redshift objects no matter in which band the photons were emitted.Comment: 25 pages, 9 figures, accepted for publication in the Astronomical Journa

    Evolution of the Near-Infrared Tully-Fisher Relation: Constraints on the Relationship Between the Stellar and Total Masses of Disk Galaxies since z=1

    Full text link
    Using a combination of Keck spectroscopy and near-infrared imaging, we investigate the K-band and stellar mass Tully-Fisher relation for 101 disk galaxies at 0.2 < z < 1.2, with the goal of placing the first observational constraints on the assembly history of halo and stellar mass. Our main result is a lack of evolution in either the K-band or stellar mass Tully-Fisher relation from z = 0 - 1.2. Furthermore, although our sample is not statistically complete, we consider it suitable for an initial investigation of how the fraction of total mass that has condensed into stars is distributed with both redshift and total halo mass. We calculate stellar masses from optical and near-infrared photometry and total masses from maximum rotational velocities and disk scale lengths, utilizing a range of model relationships derived analytically and from simulations. We find that the stellar/total mass distribution and stellar-mass Tully-Fisher relation for z > 0.7 disks is similar to that at lower redshift, suggesting that baryonic mass is accreted by disks along with dark matter at z < 1, and that disk galaxy formation at z < 1 is hierarchical in nature. We briefly discuss the evolutionary trends expected in conventional structure formation models and the implications of extending such a study to much larger samples.Comment: ApJ, in press, 9 page

    Characterization of a 3D matrix bioreactor for scaled production of human mesenchymal stem cells

    Get PDF
    Human Mesenchymal Stem Cells (hMSCs) are multipotent, immune-privileged, and possess the capacity to proliferate ex-vivo, making them a good candidate for stem cell therapy. However, a reliable scalable production system for hMSCs is needed to fuel the growing field of regenerative medicine. Current growth of hMSCs is achieved through adherent 2D methods using tissue culture flasks or cell factory systems. These processes are labor intensive and can lead to low purity and poor yield of hMSCs due to the limited control of culture conditions inherent in these systems. In this work, we are investigating a novel 3D honeycomb matrix culture system for controlled high density hMSC production. We have assessed compatibility of the hMSCs on the honeycomb matrix and developed a scale down model bioreactor for development and characterization. Computational Fluid Dynamic (CFD) modeling is used in parallel with the described in-vitro experimentation to characterize shear profiles and oxygen transport for optimization of the conditions to support high cell density hMSC cultures. These techniques will potentially allow for higher yield and purity of hMSCs to meet the large quantities of cells needed for emerging whole cell therapies

    Accurate PCR detection of influenza A/B and respiratory syncytial viruses by use of Cepheid Xpert Flu+RSV Xpress Assay in point-of-care settings: Comparison to Prodesse ProFlu+

    Get PDF
    ABSTRACT The Xpert Flu+RSV Xpress Assay is a fast, automated in vitro diagnostic test for qualitative detection and differentiation of influenza A and B viruses and respiratory syncytial virus (RSV) performed on the Cepheid GeneXpert Xpress System. The objective of this study was to establish performance characteristics of the Xpert Flu+RSV Xpress Assay compared to those of the Prodesse ProFlu+ real-time reverse transcription-PCR (RT-PCR) assay (ProFlu+) for the detection of influenza A and B viruses as well as RSV in a Clinical Laboratory Improvement Amendments (CLIA)-waived (CW) setting. Overall, the assay, using fresh and frozen nasopharyngeal (NP) swabs, demonstrated high concordance with results of the ProFlu+ assay in the combined CW and non-CW settings with positive percent agreements (PPA) (100%, 100%, and 97.1%) and negative percent agreements (NPA) (95.2%, 99.5%, and 99.6%) for influenza A and B viruses and RSV, respectively. In conclusion, this multicenter study using the Cepheid Xpert Flu+RSV Xpress Assay demonstrated high sensitivities and specificities for influenza A and B viruses and RSV in ∌60 min for use at the point-of-care in the CW setting. </jats:p

    Oxygen uptake and heart rate during simulated wildfire suppression tasks performed by Australian rural firefighters

    Get PDF
    Objective: Australian rural fire crews safeguard the nation against the annual devastation of wildfire. We have previously reported that experienced firefighters identified seven physically demanding tasks for Australian rural fire crews when suppressing wildfires. These firefighters rated the operational importance, typical duration, core fitness components, and likely frequency of the seven tasks. The intensity of these duties remains unknown. The aim of this study was to quantify the oxygen uptake (VO2), heart rate (HR) and movement speed responses during simulations of these physically demanding wildfire suppression tasks. Method: Twenty six rural firefighters (20 men, six women) performed up to seven tasks, during which time their HR and movement speed were recorded. The VO2 for each task was also calculated from the analysis of expired air collected in Douglas bags. Firefighters’ HR and movement speed were measured using HR monitors and portable global positioning system units, respectively. Results: The hose work tasks elicited a VO2 of 21-27 mL·kg-1·min-1 and peak HR of 77-87% age-predicted maximal HR (HRmax). Hand tool tasks were accompanied by VO2 of 28-34 mL·kg-1·min-1 and peak HR of 85-95%HRmax. Firefighters’ movement speed spanned 0.2 ± 0.1 to 1.8 ± 0.2 m·s-1 across the seven tasks. The cardiovascular responses in the hand tool tasks were, in most cases, higher (P < 0.05) than during those elicited by the hose work tasks. Conclusions: The cardiovascular responses elicited during simulations of physically demanding wildfire suppression approximated those reported for similar tasks in urban and forestry fire fighting jurisdictions. The findings may prompt Australian rural fire agencies to consider cardiovascular disease risk screenin
    • 

    corecore