322 research outputs found
Infant behavioral reactivity predicts change in amygdala volume 12 years later
The current study examined the link between temperamental reactivity in infancy and amygdala development in middle childhood. A sample (n = 291) of four-month-old infants was assessed for infant temperament, and two groups were identified: those exhibiting negative reactivity (n = 116) and those exhibiting positive reactivity (n = 106). At 10 and 12 years of age structural imaging was completed on a subset of these participants (n = 75). Results indicate that, between 10 and 12 years of age, left amygdala volume increased more slowly in those with negative compared to positive reactive temperament. These results provide novel evidence linking early temperament to distinct patterns of brain development over middle childhood
Oceanic mafic magmatism in the Siletz terrane, NW North America: Fragments of an Eocene oceanic plateau?
The Siletz terrane, a predominantly mafic accreted oceanic terrane, is located in the Cascadia Forearc region of Oregon, Washington and Vancouver Island. The terrane represents a late Paleocene – Eocene large igneous province that consists of pillow lavas, massive flows and intrusive sheets. Previously it has been proposed that the Siletz terrane represents either an accreted oceanic plateau, hotspot island chain, backarc basin, island arc, or a sequence of slab window volcanics. A province-wide geochemical reassessment of the terrane, including new high precision Sr-Pb-Nd-Hf isotope, has been used to assess the validity of the proposed tectonomagmatic models for the Siletz terrane. The trace element data show little evidence of crustal contamination, or an arc signature, and the samples have rare earth element (REE) patterns that are flat to light REE enriched. These features are similar to other oceanic plateaus such as the Ontong Java and the Caribbean. Initial isotope ratios range from 206Pb/204 Pb: 18.751 to 19.668, 207Pb/204Pb: 15.507–15.661, 207Pb/204Pb: 38.294–39.2128, 176Hf/177Hf: 0.28300–0.28316 (εHf: 9.0 to 14.5), 143Nd/144Nd: 0.51282–0.51299 (εNd: 5.0 to 8.1) and 87Sr/86Sr: 0.70302–0.70380. These data are consistent with a mantle source of the Siletz terrane that appears to have been heterogeneous and slightly enriched. The enriched signature has characteristics of both EM2 and HIMU components and this, combined with a calculated mantle potential temperature well above ambient mantle, indicates derivation of the Siletz magmatism from a mantle plume, possibly the Yellowstone Hotspot. We therefore conclude that the Siletz terrane represents an accreted oceanic plateau
Concert recording 2017-04-23b
[Track 1]. Slowing down. I. Rotations in an emergency [Track 2]. II. Under the city [Track 3]. III. Forfeit [Track 4]. IV. Something comfortable to fall into / Jeremiah Flannery
MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis
Polymicrobial sepsis alters the adaptive immune response and induces T cell suppression and Th2 immune polarization. We identify a GR-1+CD11b+ population whose numbers dramatically increase and remain elevated in the spleen, lymph nodes, and bone marrow during polymicrobial sepsis. Phenotypically, these cells are heterogeneous, immature, predominantly myeloid progenitors that express interleukin 10 and several other cytokines and chemokines. Splenic GR-1+ cells effectively suppress antigen-specific CD8+ T cell interferon (IFN) γ production but only modestly suppress antigen-specific and nonspecific CD4+ T cell proliferation. GR-1+ cell depletion in vivo prevents both the sepsis-induced augmentation of Th2 cell–dependent and depression of Th1 cell–dependent antibody production. Signaling through MyD88, but not Toll-like receptor 4, TIR domain–containing adaptor-inducing IFN-β, or the IFN-α/β receptor, is required for complete GR-1+CD11b+ expansion. GR-1+CD11b+ cells contribute to sepsis-induced T cell suppression and preferential Th2 polarization
Chronic Exposure to Carbon Black Ultrafine Particles Reprograms Macrophage Metabolism and Accelerates Lung Cancer
Chronic exposure to airborne carbon black ultrafine (nCB) particles generated from incomplete combustion of organic matter drives IL-17A-dependent emphysema. However, whether and how they alter the immune responses to lung cancer remains unknown. Here, we show that exposure to nCB particles increased PD-L1+ PD-L2+ CD206+ antigen-presenting cells (APCs), exhausted T cells, and Treg cells. Lung macrophages that harbored nCB particles showed selective mitochondrial structure damage and decreased oxidative respiration. Lung macrophages sustained the HIF1α axis that increased glycolysis and lactate production, culminating in an immunosuppressive microenvironment in multiple mouse models of non-small cell lung cancers. Adoptive transfer of lung APCs from nCB-exposed wild type to susceptible mice increased tumor incidence and caused early metastasis. Our findings show that nCB exposure metabolically rewires lung macrophages to promote immunosuppression and accelerates the development of lung cancer
Progression to AIDS in South Africa Is Associated with both Reverting and Compensatory Viral Mutations
We lack the understanding of why HIV-infected individuals in South Africa
progress to AIDS. We hypothesised that in end-stage disease there is a shifting
dynamic between T cell imposed immunity and viral immune escape, which, through
both compensatory and reverting viral mutations, results in increased viral
fitness, elevated plasma viral loads and disease progression. We explored how T
cell responses, viral adaptation and viral fitness inter-relate in South African
cohorts recruited from Bloemfontein, the Free State
(n = 278) and Durban, KwaZulu-Natal
(n = 775). Immune responses were measured by
γ-interferon ELISPOT assays. HLA-associated viral polymorphisms were
determined using phylogenetically corrected techniques, and viral replication
capacity (VRC) was measured by comparing the growth rate of gag-protease
recombinant viruses against recombinant NL4-3 viruses. We report that in
advanced disease (CD4 counts <100 cells/µl), T cell responses narrow,
with a relative decline in Gag-directed responses (p<0.0001). This is
associated with preserved selection pressure at specific viral amino acids
(e.g., the T242N polymorphism within the HLA-B*57/5801 restricted TW10
epitope), but with reversion at other sites (e.g., the T186S polymorphism within
the HLA-B*8101 restricted TL9 epitope), most notably in Gag and suggestive
of “immune relaxation”. The median VRC from patients with CD4 counts
<100 cells/µl was higher than from patients with CD4 counts ≥500
cells/µl (91.15% versus 85.19%,
p = 0.0004), potentially explaining the rise in viral load
associated with disease progression. Mutations at HIV Gag T186S and T242N
reduced VRC, however, in advanced disease only the T242N mutants demonstrated
increasing VRC, and were associated with compensatory mutations
(p = 0.013). These data provide novel insights into the
mechanisms of HIV disease progression in South Africa. Restoration of fitness
correlates with loss of viral control in late disease, with evidence for both
preserved and relaxed selection pressure across the HIV genome. Interventions
that maintain viral fitness costs could potentially slow progression
Systemic properties of metabolic networks lead to an epistasis-based model for heterosis
The genetic and molecular approaches to heterosis usually do not rely on any model of the genotype–phenotype relationship. From the generalization of Kacser and Burns’ biochemical model for dominance and epistasis to networks with several variable enzymes, we hypothesized that metabolic heterosis could be observed because the response of the flux towards enzyme activities and/or concentrations follows a multi-dimensional hyperbolic-like relationship. To corroborate this, we used the values of systemic parameters accounting for the kinetic behaviour of four enzymes of the upstream part of glycolysis, and simulated genetic variability by varying in silico enzyme concentrations. Then we “crossed” virtual parents to get 1,000 hybrids, and showed that best-parent heterosis was frequently observed. The decomposition of the flux value into genetic effects, with the help of a novel multilocus epistasis index, revealed that antagonistic additive-by-additive epistasis effects play the major role in this framework of the genotype–phenotype relationship. This result is consistent with various observations in quantitative and evolutionary genetics, and provides a model unifying the genetic effects underlying heterosis
The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star
The acceleration of the expansion of the universe, and the need for Dark
Energy, were inferred from the observations of Type Ia supernovae (SNe Ia).
There is consensus that SNe Ia are thermonuclear explosions that destroy
carbon-oxygen white dwarf stars that accrete matter from a companion star,
although the nature of this companion remains uncertain. SNe Ia are thought to
be reliable distance indicators because they have a standard amount of fuel and
a uniform trigger -- they are predicted to explode when the mass of the white
dwarf nears the Chandrasekhar mass -- 1.4 solar masses. Here we show that the
high redshift supernova SNLS-03D3bb has an exceptionally high luminosity and
low kinetic energy that both imply a super-Chandrasekhar mass progenitor.
Super-Chandrasekhar mass SNe Ia should preferentially occur in a young stellar
population, so this may provide an explanation for the observed trend that
overluminous SNe Ia only occur in young environments. Since this supernova does
not obey the relations that allow them to be calibrated as standard candles,
and since no counterparts have been found at low redshift, future cosmology
studies will have to consider contamination from such events.Comment: 9 pages, 4 figures. To appear in Nature Sept. 21. Accompanying News &
Views in same issue. Supplementary information available at
www.nature.com/natur
Shared Pattern of Endocranial Shape Asymmetries among Great Apes, Anatomically Modern Humans, and Fossil Hominins
Anatomical asymmetries of the human brain are a topic of major interest because of their link with handedness and cognitive functions. Their emergence and occurrence have been extensively explored in human fossil records to document the evolution of brain capacities and behaviour. We quantified for the first time antero-posterior endocranial shape asymmetries in large samples of great apes, modern humans and fossil hominins through analysis of “virtual” 3D models of skull and endocranial cavity and we statistically test for departures from symmetry. Once based on continuous variables, we show that the analysis of these brain asymmetries gives original results that build upon previous analysis based on discrete traits. In particular, it emerges that the degree of petalial asymmetries differs between great apes and hominins without modification of their pattern. We indeed demonstrate the presence of shape asymmetries in great apes, with a pattern similar to modern humans but with a lower variation and a lower degree of fluctuating asymmetry. More importantly, variations in the position of the frontal and occipital poles on the right and left hemispheres would be expected to show some degree of antisymmetry when population distribution is considered, but the observed pattern of variation among the samples is related to fluctuating asymmetry for most of the components of the petalias. Moreover, the presence of a common pattern of significant directional asymmetry for two components of the petalias in hominids implicates that the observed traits were probably inherited from the last common ancestor of extant African great apes and Homo sapiens
Tamoxifen and risk of contralateral breast cancer for BRCA1 and BRCA2 mutation carriers
Purpose To determine whether adjuvant tamoxifen treatment for breast cancer (BC) is associated with reduced contralateral breast cancer (CBC) risk for BRCA1 and/or BRCA2 mutation carriers. Methods Analysis of pooled observational cohort data, self-reported at enrollment and at follow-up from the International BRCA1, and BRCA2 Carrier Cohort Study, Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, and Breast Cancer Family Registry. Eligible women were BRCA1 and BRCA2 mutation carriers diagnosed with unilateral BC since 1970 and no other invasive cancer or tamoxifen use before first BC. Hazard ratios (HRs) for CBC associated with tamoxifen use were estimated using Cox regression, adjusting for year and age of diagnosis, country, and bilateral oophorectomy and censoring at contralateral mastectomy, death, or loss to follow-up. Results Of 1,583 BRCA1 and 881 BRCA2 mutation carriers, 383 (24%) and 454 (52%), respectively, took tamoxifen after first BC d
- …