2,377 research outputs found
Anderson Transition in Disordered Graphene
We use the regularized kernel polynomial method (RKPM) to numerically study
the effect disorder on a single layer of graphene. This accurate numerical
method enables us to study very large lattices with millions of sites, and
hence is almost free of finite size errors. Within this approach, both weak and
strong disorder regimes are handled on the same footing. We study the
tight-binding model with on-site disorder, on the honeycomb lattice. We find
that in the weak disorder regime, the Dirac fermions remain extended and their
velocities decrease as the disorder strength is increased. However, if the
disorder is strong enough, there will be a {\em mobility edge} separating {\em
localized states around the Fermi point}, from the remaining extended states.
This is in contrast to the scaling theory of localization which predicts that
all states are localized in two-dimensions (2D).Comment: 4 page
A programmable two-qubit quantum processor in silicon
With qubit measurement and control fidelities above the threshold of
fault-tolerance, much attention is moving towards the daunting task of scaling
up the number of physical qubits to the large numbers needed for fault tolerant
quantum computing. Here, quantum dot based spin qubits may offer significant
advantages due to their potential for high densities, all-electrical operation,
and integration onto an industrial platform. In this system, the
initialisation, readout, single- and two-qubit gates have been demonstrated in
various qubit representations. However, as seen with other small scale quantum
computer demonstrations, combining these elements leads to new challenges
involving qubit crosstalk, state leakage, calibration, and control hardware
which provide invaluable insight towards scaling up. Here we address these
challenges and demonstrate a programmable two-qubit quantum processor in
silicon by performing both the Deutsch-Josza and the Grover search algorithms.
In addition, we characterise the entanglement in our processor through quantum
state tomography of Bell states measuring state fidelities between 85-89% and
concurrences between 73-80%. These results pave the way for larger scale
quantum computers using spins confined to quantum dots
Phase diagram of the metal-insulator transition in 2D electronic systems
We investigated the interdependence of the effects of disorder and carrier
correlations on the metal-insulator transition in two-dimensional electronic
systems. We present a quantitative metal-insulator phase diagram. Depending on
the carrier density we find two different types of metal-insulator transition -
a continuous localization for rs=<8 and a discontinuous transition at higher
rs. The critical level of disorder at the transition decreases with decreasing
carrier density. At very low carrier densities we find that the system is
always insulating. The value of the conductivity at the transition is
consistent with recent experimental measurements. The self-consistent method
which we have developed includes the effects of both disorder and correlations
on the transition, using a density relaxation theory with the Coulomb
correlations determined from numerical simulation data.Comment: 4 pages, RevTeX + epsf, 5 figures. New comments on conducting phase
and on the conductivity. References updated and correcte
Estrogen Receptor Genotypes, Menopausal Status, and the Effects of Tamoxifen on Lipid Levels: Revised and Updated Results
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109960/1/cptclpt2010143.pd
Photofission of heavy nuclei at energies up to 4 GeV
Total photofission cross sections for 238U, 235U, 233U, 237Np, 232Th, and
natPb have been measured simultaneously, using tagged photons in the energy
range Egamma=0.17-3.84 GeV. This was the first experiment performed using the
Photon Tagging Facility in Hall B at Jefferson Lab. Our results show that the
photofission cross section for 238U relative to that for 237Np is about 80%,
implying the presence of important processes that compete with fission. We also
observe that the relative photofission cross sections do not depend strongly on
the incident photon energy over this entire energy range. If we assume that for
237Np the photofission probability is equal to unity, we observe a significant
shadowing effect starting below 1.5 GeV.Comment: 4 pages of RevTex, 6 postscript figures, Submitted to Phys. Rev. Let
Excitation of the molecular gas in the nuclear region of M82
We present high resolution HIFI spectroscopy of the nucleus of the
archetypical starburst galaxy M82. Six 12CO lines, 2 13CO lines and 4
fine-structure lines are detected. Besides showing the effects of the overall
velocity structure of the nuclear region, the line profiles also indicate the
presence of multiple components with different optical depths, temperatures and
densities in the observing beam. The data have been interpreted using a grid of
PDR models. It is found that the majority of the molecular gas is in low
density (n=10^3.5 cm^-3) clouds, with column densities of N_H=10^21.5 cm^-2 and
a relatively low UV radiation field (GO = 10^2). The remaining gas is
predominantly found in clouds with higher densities (n=10^5 cm^-3) and
radiation fields (GO = 10^2.75), but somewhat lower column densities
(N_H=10^21.2 cm^-2). The highest J CO lines are dominated by a small (1%
relative surface filling) component, with an even higher density (n=10^6 cm^-3)
and UV field (GO = 10^3.25). These results show the strength of multi-component
modeling for the interpretation of the integrated properties of galaxies.Comment: Accepted for publication in A&A Letter
A corpus-assisted study of the discourse marker well as an indicator of judges' institutional roles in court cases with litigants in person
In this paper, I concentrate on court cases with litigants in person (lay people who act on their own behalf in legal proceedings without a counsel or solicitor) and discuss the challenges of building a corpus of courtroom discourse where it is crucial to distinguish between speakers due to their distinct institutional roles. The corpus incorporates seven sub-corpora of verbatim transcripts from different court cases with litigants in person and comprises over eleven-million tokens. The focus of this paper is on the interplay between the legal and lay discourse types and how judges project their institutional roles through well-initiated turns directed at litigants in person and counsels. As a versatile discourse marker, well provides a good opportunity to explore how judges have to adapt their roles to ensure lay litigants in person receive the necessary support and that their lack of competence does not impede on the fairness of the proceedings. Given the breadth and importance of the topic of litigation in person, I discuss how the tools and approaches of corpus linguistics can be helpful in this multi-disciplinary area where multiple functions and uses of individual linguistic features need to be explored in depth
Recommended from our members
Mothers behaving badly: chaotic hedonism and the crisis of neoliberal social reproduction
This article focuses on the significance of the plethora of representations of mothers âbehaving badlyâ in contemporary anglophone media texts, including the films Bad Moms, Fun Mom Dinner and Bad Momâs Christmas, the book and online cartoons Hurrah for Gin and the recent TV comedy dramas Motherland, The Let Down and Catastrophe. All these media texts include representations of, first, mothers in the midst of highly chaotic everyday spaces where any smooth routine of domesticity is conspicuous by its absence; and second, mothers behaving hedonistically, usually through drinking and partying, behaviour that is more conventionally associated with men or women without children. After identifying the social type of the mother behaving badly (MBB), the article locates and analyses it in relation to several different social and cultural contexts. These contexts are: a neoliberal crisis in social reproduction marked by inequality and overwork; the continual if contested role of women as âfoundation parentsâ; and the negotiation of longer-term discourses of female hedonism. The title gestures towards a popular British sitcom of the 1990s, Men Behaving Badly, which popularized the idea of the ânew ladâ; and this article suggests that the new ladâs counterpart, the ladette, is mutating into the mother behaving badly, or the âlad momâ. Asking what work this figure does now, in a later neoliberal context, it argues that the mother behaving badly is simultaneously indicative of a widening and liberating range of maternal subject positions and symptomatic of a profound contemporary crisis in social reproduction. By focusing on the classed and racialised dynamics of the MBB â by examining who exactly is permitted to be hedonistic, and how â and by considering the MBBâs limited and partial imagining of progressive social change, the article concludes by emphasizing the urgency of creating more connections between such discourses and âparents behaving politicallyâ
Local realizations of contact interactions in two- and three-body problems
Mathematically rigorous theory of the two-body contact interaction in three
dimension is reviewed. Local potential realizations of this proper contact
interaction are given in terms of Poschl-Teller, exponential and square-well
potentials. Three body calculation is carried out for the halo nucleus 11Li
using adequately represented contact interaction.Comment: submitted to Phys. Rev.
Quantum catastrophe of slow light
Catastrophes are at the heart of many fascinating optical phenomena. The
rainbow, for example, is a ray catastrophe where light rays become infinitely
intense. The wave nature of light resolves the infinities of ray catastrophes
while drawing delicate interference patterns such as the supernumerary arcs of
the rainbow. Black holes cause wave singularities. Waves oscillate with
infinitely small wave lengths at the event horizon where time stands still. The
quantum nature of light avoids this higher level of catastrophic behaviour
while producing a quantum phenomenon known as Hawking radiation. As this letter
describes, light brought to a standstill in laboratory experiments can suffer a
similar wave singularity caused by a parabolic profile of the group velocity.
In turn, the quantum vacuum is forced to create photon pairs with a
characteristic spectrum. The idea may initiate a theory of quantum
catastrophes, in addition to classical catastrophe theory, and the proposed
experiment may lead to the first direct observation of a phenomenon related to
Hawking radiation.Comment: Published as "A laboratory analogue of the event horizon using slow
light in an atomic medium
- âŠ