44 research outputs found

    CYP2D6 Genotype is Not Associated with Survival in Breast Cancer Patients Treated with Tamoxifen: Results from a Population-based Study

    Get PDF
    Purpose: A number of studies have tested the hypothesis that breast cancer patients with low-activity CYP2D6 genotypes achieve inferior benefit from tamoxifen treatment, putatively due to lack of metabolic activation to endoxifen. Studies have provided conflicting data, and meta-analyses suggest a small but significant increase in cancer recurrence, necessitating additional studies to allow for accurate effect assessment. We conducted a retrospective pharmacogenomic analysis of a prospectively collected community-based cohort of patients with estrogen receptor-positive breast cancer to test for associations between low-activity CYP2D6 genotype and disease outcome in 500 patients treated with adjuvant tamoxifen monotherapy and 500 who did not receive any systemic adjuvant therapy. Methods: Tumor-derived DNA was genotyped for common, functionally consequential CYP2D6 polymorphisms (*2, *3, *4, *6, *10, *41, and copy number variants) and assigned a CYP2D6 activity score (AS) ranging from none (0) to full (2). Patients with poor metabolizer (AS = 0) phenotype were compared to patients with AS > 0 and in secondary analyses AS was analyzed quantitatively. Clinical outcome of interest was recurrence free survival (RFS) and analyses using long-rank test were adjusted for relevant clinical covariates (nodal status, tumor size, etc.). Results: CYP2D6 AS was not associated with RFS in tamoxifen treated patients in univariate analyses (p > 0.2). In adjusted analyses, increasing AS was associated with inferior RFS (Hazard ratio 1.43, 95% confidence interval 1.00-2.04, p = 0.05). In patients that did not receive tamoxifen treatment, increasing CYP2D6 AS, and AS > 0, were associated with superior RFS (each p = 0.0015). Conclusions: This population-based study does not support the hypothesis that patients with diminished CYP2D6 activity achieve inferior tamoxifen benefit. These contradictory findings suggest that the association between CYP2D6 genotype and tamoxifen treatment efficacy is null or near null, and unlikely to be useful in clinical practice

    The mineralogical composition of calcium and calcium-magnesium carbonate pedofeatures of calcareous soils in the European prairie ecodivision in Hungary

    Get PDF
    Abstract There is little data on the mineralogy of carbonate pedofeatures in the calcareous soils in Hungary which belong to the European prairie ecodivision. The aim of the present study is to enrich these data. The mineralogical composition of the carbonate pedofeatures from characteristic profiles of the calcareous soils in Hungary was studied by X-ray diffractometry, thermal analysis, SEM combined with microanalysis, and stable isotope determination. Regarding carbonate minerals only aragonite, calcite (+ magnesian calcite) and dolomite (+proto-dolomite) were identified in carbonate grains, skeletons and pedofeatures. The values relating, respectively, to stable isotope compositions (C13, O18) of carbonates in chernozems and in salt-affected soils were in the same range as those for recent soils (latter data reported earlier). There were no considerable differences between the values for the carbonate nodules and tubules from the same horizons, nor were there significant variations between the values of the same pedofeatures from different horizons (BC-C) of the same profile. Thus it can be assumed that there were no considerable changes in conditions of formation. Tendencies were recognized in the changes of (i) carbonate mineral associations, (ii) the MgCO3 content of calcites, (iii) the corrected decomposition temperatures, and (iv) the activation energies of carbonate thermal decompositions among the various substance-regimes of soils. Differences were found in substance-regimes types of soils rather than in soil types

    An interlaboratory comparison on the characterization of a sub-micrometer polydisperse particle dispersion

    Get PDF
    The measurement of polydisperse protein aggregates and particles in biotherapeutics remains a challenge, especially for particles with diameters of ≈ 1 µm and below (sub-micrometer). This paper describes an interlaboratory comparison with the goal of assessing the measurement variability for the characterization of a sub-micrometer polydisperse particle dispersion composed of five sub-populations of poly(methyl methacrylate) (PMMA) and silica beads. The study included 20 participating laboratories from industry, academia, and government, and a variety of state-of-the-art particle-counting instruments. The received datasets were organized by instrument class to enable comparison of intralaboratory and interlaboratory performance. The main findings included high variability between datasets from different laboratories, with coefficients of variation from 13 % to 189 %. Intralaboratory variability was, on average, 37 % of the interlaboratory variability for an instrument class and particle sub-population. Drop-offs at either end of the size range and poor agreement on maximum counts of particle sub-populations were noted. The mean distributions from an instrument class, however, showed the size-coverage range for that class. The study shows that a poly-disperse sample can be used to assess performance capabilities of an instrument set-up (including hardware, software, and user settings) and provides guidance for the development of polydisperse reference materials.Drug Delivery Technolog

    The Coupling of Alternative Splicing and Nonsense-Mediated mRNA Decay

    Full text link
    Most human genes exhibit alternative splicing, but not all alternatively spliced transcripts produce functional proteins. Computational and experimental results indicate that a substantial fraction of alternative splicing events in humans result in mRNA isoforms that harbor a premature termination codon (PTC). These transcripts are predicted to be degraded by the nonsense-mediated mRNA decay (NMD) pathway. One explanation for the abundance of PTC-containing isoforms is that they represent splicing errors that are identified and degraded by the NMD pathway. Another potential explanation for this startling observation is that cells may link alternative splicing and NMD to regulate the abundance of mRNA transcripts. This mechanism, which we call "Regulated Unproductive Splicing and Translation" (RUST), has been experimentally shown to regulate expression of a wide variety of genes in many organisms from yeast to human. It is frequently employed for autoregulation of proteins that affect the splicing process itself. Thus, alternative splicing and NMD act together to play an important role in regulating gene expression
    corecore