50 research outputs found

    Treatment of keratinocytes with 4-phenylbutyrate in epidermolysis bullosa: Lessons for therapies in keratin disorders

    Get PDF
    Missense mutations in keratin 5 and 14 genes cause the severe skin fragility disorder epidermolysis bullosa simplex (EBS) by collapsing of the keratin cytoskeleton into cytoplasmic protein aggregates. Despite intense efforts, no molecular therapies are available, mostly due to the complex phenotype of EBS, comprising cell fragility, diminished adhesion, skin inflammation and itch.Methods: We extensively characterized KRT5 and KRT14 mutant keratinocytes from patients with severe generalized EBS following exposure to the chemical chaperone 4-phenylbutyrate (4- PBA).Findings: 4-PBA diminished keratin aggregates within EBS cells and ameliorated their inflammatory phenotype. Chemoproteomics of 4-PBA-treated and untreated EBS cells revealed reduced IL1β expression- but also showed activation of Wnt/β-catenin and NF-kB pathways. The abundance of extracellular matrix and cytoskeletal proteins was significantly altered, coinciding with diminished keratinocyte adhesion and migration in a 4-PBA dose-dependent manner.Interpretation: Together, our study reveals a complex interplay of benefits and disadvantages that challenge the use of 4-PBA in skin fragility disorders

    Incidence and risk factors for relapses in HIV-associated non-Hodgkin lymphoma as observed in the German HIV-related lymphoma cohort study

    Get PDF
    Outcome of HIV-infected patients with AIDS-related lymphomas has improved during recent years. However, data on incidence, risk factors, and outcome of relapses in AIDS-related lymphomas after achieving complete remission are still limited. This prospective observational multicenter study includes HIV-infected patients with biopsy-or cytology-proven malignant lymphomas since 2005. Data on HIV infection and lymphoma characteristics, treatment and outcome were recorded. For this analysis, AIDS-related lymphomas patients in complete remission were analyzed in terms of their relapse-free survival and potential risk factors for relapses. In total, 254 of 399 (63.7%) patients with AIDS-related lymphomas reached a complete remission with their first-line chemotherapy. After a median follow up of 4.6 years, 5-year overall survival of the 254 patients was 87.8% (Standard Error 3.1%). Twenty-nine patients relapsed (11.4%). Several factors were independently associated with a higher relapse rate, including an unclassifiable histology, a stage III or IV according to the Ann Arbor Staging System, no concomitant combined antiretroviral therapy during chemotherapy and R-CHOP-based compared to more intensive chemotherapy regimens in Burkitt lymphomas. In conclusion, complete remission and relapse rates observed in our study are similar to those reported in HIV-negative non-Hodgkin lymphomas. These data provide further evidence for the use of concomitant combined antiretroviral therapy during chemotherapy and a benefit from more intensive chemotherapy regimens in Burkitt lymphomas. Modifications to the chemotherapy regimen appear to have only a limited impact on relapse rate

    T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays

    Get PDF
    Chemicals can elicit T-cell-mediated diseases such as allergic contact dermatitis and adverse drug reactions. Therefore, testing of chemicals, drugs and protein allergens for hazard identification and risk assessment is essential in regulatory toxicology. The seventh amendment of the EU Cosmetics Directive now prohibits the testing of cosmetic ingredients in mice, guinea pigs and other animal species to assess their sensitizing potential. In addition, the EU Chemicals Directive REACh requires the retesting of more than 30,000 chemicals for different toxicological endpoints, including sensitization, requiring vast numbers of animals. Therefore, alternative methods are urgently needed to eventually replace animal testing. Here, we summarize the outcome of an expert meeting in Rome on 7 November 2009 on the development of T-cell-based in vitro assays as tools in immunotoxicology to identify hazardous chemicals and drugs. In addition, we provide an overview of the development of the field over the last two decades

    Contact sensitizers induce skin inflammation via ROS production and hyaluronic acid degradation.

    Get PDF
    BACKGROUND: Allergic contact dermatitis (ACD) represents a severe health problem with increasing worldwide prevalence. It is a T cell-mediated skin disease induced by protein-reactive organic and inorganic chemicals. A key feature of contact allergens is their ability to trigger an innate immune response that leads to skin inflammation. Previous evidence from the mouse contact hypersensitivity (CHS) model suggests a role for endogenous activators of innate immune signaling. Here, we analyzed the role of contact sensitizer induced ROS production and concomitant changes in hyaluronic acid metabolism on CHS responses. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed in vitro and in vivo ROS production using fluorescent ROS detection reagents. HA fragmentation was determined by gel electrophoresis. The influence of blocking ROS production and HA degradation by antioxidants, hyaluronidase-inhibitor or p38 MAPK inhibitor was analyzed in the murine CHS model. Here, we demonstrate that organic contact sensitizers induce production of reactive oxygen species (ROS) and a concomitant breakdown of the extracellular matrix (ECM) component hyaluronic acid (HA) to pro-inflammatory low molecular weight fragments in the skin. Importantly, inhibition of either ROS-mediated or enzymatic HA breakdown prevents sensitization as well as elicitation of CHS. CONCLUSIONS/SIGNIFICANCE: These data identify an indirect mechanism of contact sensitizer induced innate inflammatory signaling involving the breakdown of the ECM and generation of endogenous danger signals. Our findings suggest a beneficial role for anti-oxidants and hyaluronidase inhibitors in prevention and treatment of ACD

    The Effect of Inhibitory Signals on the Priming of Drug Hapten-Specific T Cells That Express Distinct V beta Receptors

    No full text
    Drug hypersensitivity involves the activation of T cells in an HLA allele–restricted manner. Because the majority of individuals who carry HLA risk alleles do not develop hypersensitivity, other parameters must control development of the drug-specific T cell response. Thus, we have used a T cell–priming assay and nitroso sulfamethoxazole (SMX-NO) as a model Ag to investigate the activation of specific TCR Vβ subtypes, the impact of programmed death -1 (PD-1), CTL-associated protein 4 (CTLA4), and T cell Ig and mucin domain protein-3 (TIM-3) coinhibitory signaling on activation of naive and memory T cells, and the ability of regulatory T cells (Tregs) to prevent responses. An expansion of the TCR repertoire was observed for nine Vβ subtypes, whereas spectratyping revealed that SMX-NO–specific T cell responses are controlled by public TCRs present in all individuals alongside private TCR repertoires specific to each individual. We proceeded to evaluate the extent to which the activation of these TCR Vβ–restricted Ag-specific T cell responses is governed by regulatory signals. Blockade of PD-L1/CTLA4 signaling dampened activation of SMX-NO–specific naive and memory T cells, whereas blockade of TIM-3 produced no effect. Programmed death-1, CTLA4, and TIM-3 displayed discrete expression profiles during drug-induced T cell activation, and expression of each receptor was enhanced on dividing T cells. Because these receptors are also expressed on Tregs, Treg-mediated suppression of SMX-NO–induced T cell activation was investigated. Tregs significantly dampened the priming of T cells. In conclusion, our findings demonstrate that distinct TCR Vβ subtypes, dysregulation of coinhibitory signaling pathways, and dysfunctional Tregs may influence predisposition to hypersensitivity
    corecore