1,925 research outputs found

    Coronal emission lines as thermometers

    Full text link
    Coronal emission line intensities are commonly used to measure electron temperatures using emission measure and/or line ratio methods. In the presence of systematic errors in atomic excitation calculations and data noise, the information on underlying temperature distributions is fundamentally limited. Increasing the number of emission lines used does not necessarily improve the ability to discriminate between different kinds of temperature distributions.Comment: Accepted by ApJ, November 200

    Sampling in design research : eight key considerations

    Get PDF
    How a research team defines their study sample can be decisive in shaping impact on both practice and theory. However, sampling in design research faces several major challenges, including diverse terminology, limited prior literature, and lack of common framework for discussing sampling decisions. We address these challenges by bringing together guidance from across related research fields as well as cross-referring to examples from published design research. We offer a structured process for sample development and present eight key sampling considerations. The paper contributes to research method selection, development, and use, as well as extending discussions surrounding knowledge construction, standards of reporting, and design research impact

    Dissecting the Serotonergic Food Signal Stimulating Sensory-Mediated Aversive Behavior in C. elegans

    Get PDF
    Nutritional state often modulates olfaction and in Caenorhabditis elegans food stimulates aversive responses mediated by the nociceptive ASH sensory neurons. In the present study, we have characterized the role of key serotonergic neurons that differentially modulate aversive behavior in response to changing nutritional status. The serotonergic NSM and ADF neurons play antagonistic roles in food stimulation. NSM 5-HT activates SER-5 on the ASHs and SER-1 on the RIA interneurons and stimulates aversive responses, suggesting that food-dependent serotonergic stimulation involves local changes in 5-HT levels mediated by extrasynaptic 5-HT receptors. In contrast, ADF 5-HT activates SER-1 on the octopaminergic RIC interneurons to inhibit food–stimulation, suggesting neuron-specific stimulatory and inhibitory roles for SER-1 signaling. Both the NSMs and ADFs express INS-1, an insulin-like peptide, that appears to cell autonomously inhibit serotonergic signaling. Food also modulates directional decisions after reversal is complete, through the same serotonergic neurons and receptors involved in the initiation of reversal, and the decision to continue forward or change direction after reversal is dictated entirely by nutritional state. These results highlight the complexity of the “food signal” and serotonergic signaling in the modulation of sensory-mediated aversive behaviors

    Luminescence Properties of Thin Film Ta2 Zn3 O8 and Mn Doped Ta2 Zn3 O8

    Get PDF
    Blue luminescence from TaZZn30g and green luminescence from Mn doped TaZZn30g has been observed under low voltage cathodoluminescent excitation, In this article , the luminescence mechanisms of TaZZn30g and Mn doped TaZZn30 g are discussed in detail. The results suggest that the intrinsic blue luminescence of TaZZn30g results from a metal-to-ligand transition, whereas the green luminescence of Mn doped TaZZn30g results from the Mn 4T 1-6A I transition. The suppression of the blue intrinsic luminescence in Mn doped TaZZn30g suggests that efficient energy transfer from the host material to the Mn occurs. This energy transfer phenomenon is also discussed by comparing the photoluminescence excitation spectra of both thin film materials. Finally, the relative efficiency versus voltage and current density is demonstrated and discussed pertaining to field emission device operation

    The use of displacement damage dose to correlate degradation in solar cells exposed to different radiations

    Get PDF
    It has been found useful in the past to use the concept of 'equivalent fluence' to compare the radiation response of different solar cell technologies. Results are usually given in terms of an equivalent 1 MeV electron or an equivalent 10 MeV proton fluence. To specify cell response in a complex space-radiation environment in terms of an equivalent fluence, it is necessary to measure damage coefficients for a number of representative electron and proton energies. However, at the last Photovoltaic Specialist Conference we showed that nonionizing energy loss (NIEL) could be used to correlate damage coefficients for protons, using measurements for GaAs as an example. This correlation means that damage coefficients for all proton energies except near threshold can be predicted from a measurement made at one particular energy. NIEL is the exact equivalent for displacement damage of linear energy transfer (LET) for ionization energy loss. The use of NIEL in this way leads naturally to the concept of 10 MeV equivalent proton fluence. The situation for electron damage is more complex, however. It is shown that the concept of 'displacement damage dose' gives a more general way of unifying damage coefficients. It follows that 1 MeV electron equivalent fluence is a special case of a more general quantity for unifying electron damage coefficients which we call the 'effective 1 MeV electron equivalent dose'

    Moons Are Planets: Scientific Usefulness Versus Cultural Teleology in the Taxonomy of Planetary Science

    Full text link
    We argue that taxonomical concept development is vital for planetary science as in all branches of science, but its importance has been obscured by unique historical developments. The literature shows that the concept of planet developed by scientists during the Copernican Revolution was theory-laden and pragmatic for science. It included both primaries and satellites as planets due to their common intrinsic, geological characteristics. About two centuries later the non-scientific public had just adopted heliocentrism and was motivated to preserve elements of geocentrism including teleology and the assumptions of astrology. This motivated development of a folk concept of planet that contradicted the scientific view. The folk taxonomy was based on what an object orbits, making satellites out to be non-planets and ignoring most asteroids. Astronomers continued to keep primaries and moons classed together as planets and continued teaching that taxonomy until the 1920s. The astronomical community lost interest in planets ca. 1910 to 1955 and during that period complacently accepted the folk concept. Enough time has now elapsed so that modern astronomers forgot this history and rewrote it to claim that the folk taxonomy is the one that was created by the Copernican scientists. Starting ca. 1960 when spacecraft missions were developed to send back detailed new data, there was an explosion of publishing about planets including the satellites, leading to revival of the Copernican planet concept. We present evidence that taxonomical alignment with geological complexity is the most useful scientific taxonomy for planets. It is this complexity of both primary and secondary planets that is a key part of the chain of origins for life in the cosmos.Comment: 68 pages, 16 figures. For supplemental data files, see https://www.philipmetzger.com/moons_are_planets

    Infrasound Exposure: High-Resolution Measurements Near Wind Power Plants

    Get PDF
    This chapter focuses on infrasonic (≀20 Hz) noise exposure as captured in and around homes located in the vicinity of wind power plants. Despite persistent noise complaints by local residents, no satisfactory acoustical event has yet been identified to justify this troublesome (worldwide) situation. Continuous (days), high-resolution recordings—spectral segmentation of 1/36 of an octave and 1-second temporal increments—have been acquired in many homes across the world revealing the presence of wind turbine acoustic signatures. These consist of trains of airborne pressure pulses, identified in the frequency domain as harmonic series with the fundamental frequency equal to that of the blade-pass frequency of the wind turbine. This report documents three such cases (Portugal and Scotland). The highest peaks of the wind turbine acoustic signature (up to 25 dB over background noise) occurred within the 0.5–5 Hz window which is classically defined as below the human hearing threshold; and yet these ‘inaudible’ phenomena appear to trigger severe biological reactions. Based on the prominence of the peaks in the harmonic series, a new measure is proposed for use in determining dose–response relationships for infrasonic exposures. This new methodology may be applicable to infrasonic exposures in both environmental and occupational settings

    At the edge of the safety net: Unsuccessful benefits claims at the start of the COVID-19 pandemic

    Get PDF
    There has been much scrutiny of the British benefits system during COVID-19, and most experts agree that the benefits system has performed well, even if historic weaknesses remain. Yet little attention has been paid to those who start a claim that is ultimately not successful. This report focuses on these ‘unsuccessful claimants’, using new YouGov survey data and interview evidence funded by the Health Foundation

    Radiographic Union Scoring Scale for Determining Consolidation Rates in the Calcaneus.

    Get PDF
    The reliable evaluation of osseous consolidation after hindfoot osteotomy can be difficult. Concomitant hindfoot osteotomies often dictate the advancement of weightbearing, and radiographs are the mainstay imaging tool owing to cost, efficiency, and radiation exposure. Understanding the radiographic parameters that can be used to reliably determine osseous healing is paramount. However, currently, no reliable or validated method is available to determine osseous healing of hindfoot osteotomies in irregular bones of the foot. The purpose of the present study was to develop a radiographic healing scoring system that would enhance the diagnostic healing assessment after elective calcaneal osteotomy. We adapted existing orthopedic scales validated for healing in the leg for application in the irregular bones of the foot. A total of 168 cases were evaluated by 6 blinded assessors to test the interrater reliability of subjective healing assessment compared with the proposed scoring system. The radiographs were classified by postoperative period: ≀4 weeks, 5 to 12 weeks, and \u3e12 weeks. The proposed scale had high interrater reliability but was burdensome. Using a priori item reduction protocols, a limited 6-item scale further improved internal consistency and reduced the burden. The result was excellent interrater reliability (α = 0.98, standard deviation 0.02, 95% confidence interval 0.91 to 0.96) among all assessors when using the scoring scale compared with unacceptable reliability (α = 0.438) for subjective osteotomy healing. The reliability of our system appeared superior to that of subjective assessment of osseous healing alone, even in the absence of clinical correlates after osteotomy of the calcaneus
    • 

    corecore