8 research outputs found

    A New Fixed-Target Approach for Serial Crystallography at Synchrotron Light Sources and X-ray Free Electron Lasers

    No full text
    In the framework of this thesis, a new method for high-speed fixed-target serial crystallography experiments and its applicability to biomacromolecular crystallography at both synchrotron light sources and X-ray free electron lasers (XFELs) is presented. The method is based on a sample holder, which can carry up to 20,000 microcrystals and which is made of single-crystalline silicon. Using synchrotron radiation, the structure of Operophtera brumata cytoplasmic polyhedrosis virus type 18 polyhedrin, lysozyme and cubic insulin was determined by collecting X-ray diffraction data from multiple microcrystals. Data collection was shown to be possible at both cryogenic and ambient conditions. For room-temperature measurements, both global and specific indications of radiation damage were investigated and characterized. Due to the sieve-like structure of the chip, the microcrystals tend to arrange themselves according to the micropore pattern, which allows for efficient sampling of the sample material. In combination with a high-speed scanning stage, the sample holder was furthermore shown to be highly suitable for serial femtosecond crystallography experiments. By fast raster scanning of the chip through the pulsed X-ray beam of an XFEL, structure determination of a virus, using the example of bovine enterovirus type 2, has been demonstrated at an XFEL for the first time. Hit rates of up to 100% were obtained by the presented method, which refers to a reduction in sample consumption by at least three orders of magnitude with respect to common liquid-jet injection methods used for sample delivery. In this way, the typical time needed for data collection in serial femtosecond crystallography is significantly decreased. The presented technique for sample loading of the chip is easy to learn and results in efficient removal of the surrounding mother liquor, thereby reducing the generated background signal. Since the chip is made of single-crystalline silicon, in principle no diffuse background contribution is caused by the chip itself

    High-speed fixed-target serial virus crystallography.

    No full text

    Room-Temperature Macromolecular Crystallography Using a Micro-Patterned Silicon Chip with Minimal Background Scattering

    No full text
    Recent success at X-ray free-electron lasers has led to serial crystallography experiments staging a comeback at synchrotron sources as well. With crystal lifetimes typically in the millisecond range and the latest-generation detector technologies with high framing rates up to 1 kHz, fast sample exchange has become the bottleneck for such experiments. A micro-patterned chip has been developed from single-crystalline silicon, which acts as a sample holder for up to several thousand microcrystals at a very low background level. The crystals can be easily loaded onto the chip and excess mother liquor can be efficiently removed. Dehydration of the crystals is prevented by keeping them in a stream of humidified air during data collection. Further sealing of the sample holder, for example with Kapton, is not required. Room-temperature data collection from insulin crystals loaded onto the chip proves the applicability of the chip for macromolecular crystallography. Subsequent structure refinements reveal no radiation-damage-induced structural changes for insulin crystals up to a dose of 565.6 kGy, even though the total diffraction power of the crystals has on average decreased to 19.1% of its initial value for the same dose. A decay of the diffracting power by half is observed for a dose of D1/2 = 147.5 ± 19.1 kGy, which is about 1/300 of the dose before crystals show a similar decay at cryogenic temperatures

    TakeTwo: an indexing algorithm suited to still images with known crystal parameters

    No full text
    The indexing methods currently used for serial femtosecond crystallography were originally developed for experiments in which crystals are rotated in the X-ray beam, providing significant three-dimensional information. On the other hand, shots from both X-ray free-electron lasers and serial synchrotron crystallography experiments are still images, in which the few three-dimensional data available arise only from the curvature of the Ewald sphere. Traditional synchrotron crystallography methods are thus less well suited to still image data processing. Here, a new indexing method is presented with the aim of maximizing information use from a still image given the known unit-cell dimensions and space group. Efficacy for cubic, hexagonal and orthorhombic space groups is shown, and for those showing some evidence of diffraction the indexing rate ranged from 90% (hexagonal space group) to 151% (cubic space group). Here, the indexing rate refers to the number of lattices indexed per image
    corecore