32 research outputs found

    The impact of model and variable selection on estimates of precision

    Get PDF
    Die letzten zwanzig Jahre haben gezeigt, dass die Integration luftgestützter Lasertechnologien (Light Detection and Ranging; LiDAR) in die Erfassung von Waldressourcen dazu beitragen kann, die Genauigkeit von Schätzungen zu erhöhen. Um diese zu ermöglichen, müssen Feldaten mit LiDAR-Daten kombiniert werden. Diverse Techniken der Modellierung bieten die Möglichkeit, diese Verbindung statistisch zu beschreiben. Während die Wahl der Methode in der Regel nur geringen Einfluss auf Punktschätzer hat, liefert sie unterschiedliche Schätzungen der Genauigkeit. In der vorliegenden Studie wurde der Einfluss verschiedener Modellierungstechniken und Variablenauswahl auf die Genauigkeit von Schätzungen untersucht. Der Schwerpunkt der Arbeit liegt hierbei auf LiDAR Anwendungen im Rahmen von Waldinventuren. Die Methoden der Variablenauswahl, welche in dieser Studie berücksichtigt wurden, waren das Akaike Informationskriterium (AIC), das korrigierte Akaike Informationskriterium (AICc), und das bayesianische (oder Schwarz) Informationskriterium. Zudem wurden Variablen anhand der Konditionsnummer und des Varianzinflationsfaktors ausgewählt. Weitere Methoden, die in dieser Studie Berücksichtigung fanden, umfassen Ridge Regression, der least absolute shrinkage and selection operator (Lasso), und der Random Forest Algorithmus. Die Methoden der schrittweisen Variablenauswahl wurden sowohl im Rahmen der Modell-assistierten als auch der Modell-basierten Inferenz untersucht. Die übrigen Methoden wurden nur im Rahmen der Modell-assistierten Inferenz untersucht. In einer umfangreichen Simulationsstudie wurden die Einflüsse der Art der Modellierungsmethode und Art der Variablenauswahl auf die Genauigkeit der Schätzung von Populationsparametern (oberirdische Biomasse in Megagramm pro Hektar) ermittelt. Hierzu wurden fünf unterschiedliche Populationen genutzt. Drei künstliche Populationen wurden simuliert, zwei weitere basierten auf in Kanada und Norwegen erhobenen Waldinveturdaten. Canonical vine copulas wurden genutzt um synthetische Populationen aus diesen Waldinventurdaten zu generieren. Aus den Populationen wurden wiederholt einfache Zufallsstichproben gezogen und für jede Stichprobe wurden der Mittelwert und die Genauigkeit der Mittelwertschätzung geschäzt. Während für das Modell-basierte Verfahren nur ein Varianzschätzer untersucht wurde, wurden für den Modell-assistierten Ansatz drei unterschiedliche Schätzer untersucht. Die Ergebnisse der Simulationsstudie zeigten, dass das einfache Anwenden von schrittweisen Methoden zur Variablenauswahl generell zur Überschätzung der Genauigkeiten in LiDAR unterstützten Waldinventuren führt. Die verzerrte Schätzung der Genauigkeiten war vor allem für kleine Stichproben (n = 40 und n = 50) von Bedeutung. Für Stichproben von größerem Umfang (n = 400), war die Überschätzung der Genauigkeit vernachlässigbar. Gute Ergebnisse, im Hinblick auf Deckungsraten und empirischem Standardfehler, zeigten Ridge Regression, Lasso und der Random Forest Algorithmus. Aus den Ergebnissen dieser Studie kann abgeleitet werden, dass die zuletzt genannten Methoden in zukünftige LiDAR unterstützten Waldinventuren Berücksichtigung finden sollten.The past two decades have demonstrated a great potential for airborne Light Detection and Ranging (LiDAR) data to improve the efficiency of forest resource inventories (FRIs). In order to make efficient use of LiDAR data in FRIs, the data need to be related to observations taken in the field. Various modeling techniques are available that enable a data analyst to establish a link between the two data sources. While the choice for a modeling technique may have negligible effects on point estimates, different model techniques may deliver different estimates of precision. This study investigated the impact of various model and variable selection procedures on estimates of precision. The focus was on LiDAR applications in FRIs. The procedures considered included stepwise variable selection procedures such as the Akaike Information Criterion (AIC), the corrected Akaike Information Criterion (AICc), and the Bayesian (or Schwarz) Information Criterion. Variables have also been selected based on the condition number of the matrix of covariates (i.e., LiDAR metrics) and the variance inflation factor. Other modeling techniques considered in this study were ridge regression, the least absolute shrinkage and selection operator (Lasso), partial least squares regression, and the random forest algorithm. Stepwise variable selection procedures have been considered in both, the (design-based) model-assisted, as well as in the model-based (or model-dependent) inference framework. All other techniques were investigated only for the model-assisted approach. In a comprehensive simulation study, the effects of the different modeling techniques on the precision of population parameter estimates (mean aboveground biomass per hectare) were investigated. Five different datasets were used. Three artificial datasets were simulated; two further datasets were based on FRI data from Canada and Norway. Canonical vine copulas were employed to create synthetic populations from the FRI data. From all populations simple random samples of different size were repeatedly drawn and the mean and variance of the mean were estimated for each sample. While for the model-based approach only a single variance estimator was investigated, for the model-assisted approach three alternative estimators were examined. The results of the simulation studies suggest that blind application of stepwise variable selection procedures lead to overly optimistic estimates of precision in LiDAR-assisted FRIs. The effects were severe for small sample sizes (n = 40 and n = 50). For large samples (n = 400) overestimation of precision was negligible. Good performance in terms of empirical standard errors and coverage rates were obtained for ridge regression, Lasso, and the random forest algorithm. This study concludes that the use of the latter three modeling techniques may prove useful in future LiDAR-assisted FRIs

    Mystery of fatal ‘staggering disease’ unravelled: novel rustrela virus causes severe meningoencephalomyelitis in domestic cats

    Get PDF
    ‘Staggering disease’ is a neurological disease entity considered a threat to European domestic cats (Felis catus) for almost five decades. However, its aetiology has remained obscure. Rustrela virus (RusV), a relative of rubella virus, has recently been shown to be associated with encephalitis in a broad range of mammalian hosts. Here, we report the detection of RusV RNA and antigen by metagenomic sequencing, RT-qPCR, in-situ hybridization and immunohistochemistry in brain tissues of 27 out of 29 cats with non-suppurative meningoencephalomyelitis and clinical signs compatible with’staggering disease’ from Sweden, Austria, and Germany, but not in non-affected control cats. Screening of possible reservoir hosts in Sweden revealed RusV infection in wood mice (Apodemus sylvaticus). Our work indicates that RusV is the long-sought cause of feline ‘staggering disease’. Given its reported broad host spectrum and considerable geographic range, RusV may be the aetiological agent of neuropathologies in further mammals, possibly even including humans

    Mystery of fatal 'staggering disease' unravelled: novel rustrela virus causes severe meningoencephalomyelitis in domestic cats

    Get PDF
    ‘Staggering disease’ is a neurological disease entity considered a threat to European domestic cats (Felis catus) for almost five decades. However, its aetiology has remained obscure. Rustrela virus (RusV), a relative of rubella virus, has recently been shown to be associated with encephalitis in a broad range of mammalian hosts. Here, we report the detection of RusV RNA and antigen by metagenomic sequencing, RT-qPCR, in-situ hybridization and immunohistochemistry in brain tissues of 27 out of 29 cats with non-suppurative meningoencephalomyelitis and clinical signs compatible with’staggering disease’ from Sweden, Austria, and Germany, but not in non-affected control cats. Screening of possible reservoir hosts in Sweden revealed RusV infection in wood mice (Apodemus sylvaticus). Our work indicates that RusV is the long-sought cause of feline ‘staggering disease’. Given its reported broad host spectrum and considerable geographic range, RusV may be the aetiological agent of neuropathologies in further mammals, possibly even including humans

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2^{1,2}. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4^{3,4}. Here, leveraging global tree databases5,6,7^{5,6,7}, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    Author Correction: Native diversity buffers against severity of non-native tree invasions.

    Get PDF

    Native diversity buffers against severity of non-native tree invasions.

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    The global biogeography of tree leaf form and habit.

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions
    corecore