35 research outputs found

    Sequence optimization to reduce velocity offsets in cardiovascular magnetic resonance volume flow quantification--a multi-vendor study.

    Get PDF
    PURPOSE: Eddy current induced velocity offsets are of concern for accuracy in cardiovascular magnetic resonance (CMR) volume flow quantification. However, currently known theoretical aspects of eddy current behavior have not led to effective guidelines for the optimization of flow quantification sequences. This study is aimed at identifying correlations between protocol parameters and the resulting velocity error in clinical CMR flow measurements in a multi-vendor study. METHODS: Nine 1.5T scanners of three different types/vendors were studied. Measurements were performed on a large stationary phantom. Starting from a clinical breath-hold flow protocol, several protocol parameters were varied. Acquisitions were made in three clinically relevant orientations. Additionally, a time delay between the bipolar gradient and read-out, asymmetric versus symmetric velocity encoding, and gradient amplitude and slew rate were studied in adapted sequences as exploratory measurements beyond the protocol. Image analysis determined the worst-case offset for a typical great-vessel flow measurement. RESULTS: The results showed a great variation in offset behavior among scanners (standard deviation among samples of 0.3, 0.4, and 0.9 cm/s for the three different scanner types), even for small changes in the protocol. Considering the absolute values, none of the tested protocol settings consistently reduced the velocity offsets below the critical level of 0.6 cm/s neither for all three orientations nor for all three scanner types. Using multilevel linear model analysis, oblique aortic and pulmonary slices showed systematic higher offsets than the transverse aortic slices (oblique aortic 0.6 cm/s, and pulmonary 1.8 cm/s higher than transverse aortic). The exploratory measurements beyond the protocol yielded some new leads for further sequence development towards reduction of velocity offsets; however those protocols were not always compatible with the time-constraints of breath-hold imaging and flow-related artefacts. CONCLUSIONS: This study showed that with current systems there was no generic protocol which resulted into acceptable flow offset values. Protocol optimization would have to be performed on a per scanner and per protocol basis. Proper optimization might make accurate (transverse) aortic flow quantification possible for most scanners. Pulmonary flow quantification would still need further (offline) correction.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Towards comprehensive assessment of mitral regurgitation using cardiovascular magnetic resonance

    Get PDF
    Cardiovascular magnetic resonance (CMR) is increasingly used to assess patients with mitral regurgitation. Its advantages include quantitative determination of ventricular volumes and function and the mitral regurgitant fraction, and in ischemic mitral regurgitation, regional myocardial function and viability. In addition to these, identification of leaflet prolapse or restriction is necessary when valve repair is contemplated. We describe a systematic approach to the evaluation of mitral regurgitation using CMR which we have used in 149 patients with varying etiologies and severity of regurgitation over a 15 month period

    Left ventricular remodeling and hypertrophy in patients with aortic stenosis:insights from cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiovascular magnetic resonance (CMR) is the gold standard non-invasive method for determining left ventricular (LV) mass and volume but has not been used previously to characterise the LV remodeling response in aortic stenosis. We sought to investigate the degree and patterns of hypertrophy in aortic stenosis using CMR.</p> <p>Methods</p> <p>Patients with moderate or severe aortic stenosis, normal coronary arteries and no other significant valve lesions or cardiomyopathy were scanned by CMR with valve severity assessed by planimetry and velocity mapping. The extent and patterns of hypertrophy were investigated using measurements of the LV mass index, indexed LV volumes and the LV mass/volume ratio. Asymmetric forms of remodeling and hypertrophy were defined by a regional wall thickening <b>≥</b>13 mm and >1.5-fold the thickness of the opposing myocardial segment.</p> <p>Results</p> <p>Ninety-one patients (61±21 years; 57 male) with aortic stenosis (aortic valve area 0.93±0.32cm2) were recruited. The severity of aortic stenosis was unrelated to the degree (r<sup>2</sup>=0.012, P=0.43) and pattern (P=0.22) of hypertrophy. By univariate analysis, only male sex demonstrated an association with LV mass index (P=0.02). Six patterns of LV adaption were observed: normal ventricular geometry (n=11), concentric remodeling (n=11), asymmetric remodeling (n=11), concentric hypertrophy (n=34), asymmetric hypertrophy (n=14) and LV decompensation (n=10). Asymmetric patterns displayed considerable overlap in appearances (wall thickness 17±2mm) with hypertrophic cardiomyopathy.</p> <p>Conclusions</p> <p>We have demonstrated that in patients with moderate and severe aortic stenosis, the pattern of LV adaption and degree of hypertrophy do not closely correlate with the severity of valve narrowing and that asymmetric patterns of wall thickening are common.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Reference Number: NCT00930735</p

    Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements

    Get PDF
    AIMS: Cardiovascular magnetic resonance (CMR) allows non-invasive phase contrast measurements of flow through planes transecting large vessels. However, some clinically valuable applications are highly sensitive to errors caused by small offsets of measured velocities if these are not adequately corrected, for example by the use of static tissue or static phantom correction of the offset error. We studied the severity of uncorrected velocity offset errors across sites and CMR systems. METHODS AND RESULTS: In a multi-centre, multi-vendor study, breath-hold through-plane retrospectively ECG-gated phase contrast acquisitions, as are used clinically for aortic and pulmonary flow measurement, were applied to static gelatin phantoms in twelve 1.5 T CMR systems, using a velocity encoding range of 150 cm/s. No post-processing corrections of offsets were implemented. The greatest uncorrected velocity offset, taken as an average over a 'great vessel' region (30 mm diameter) located up to 70 mm in-plane distance from the magnet isocenter, ranged from 0.4 cm/s to 4.9 cm/s. It averaged 2.7 cm/s over all the planes and systems. By theoretical calculation, a velocity offset error of 0.6 cm/s (representing just 0.4% of a 150 cm/s velocity encoding range) is barely acceptable, potentially causing about 5% miscalculation of cardiac output and up to 10% error in shunt measurement. CONCLUSION: In the absence of hardware or software upgrades able to reduce phase offset errors, all the systems tested appeared to require post-acquisition correction to achieve consistently reliable breath-hold measurements of flow. The effectiveness of offset correction software will still need testing with respect to clinical flow acquisitions

    Midwall Fibrosis Is an Independent Predictor of Mortality in Patients With Aortic Stenosis

    Get PDF
    ObjectivesThe goal of this study was to assess the prognostic significance of midwall and infarct patterns of late gadolinium enhancement (LGE) in aortic stenosis.BackgroundMyocardial fibrosis occurs in aortic stenosis as part of the hypertrophic response. It can be detected by LGE, which is associated with an adverse prognosis in a range of other cardiac conditions.MethodsBetween January 2003 and October 2008, consecutive patients with moderate or severe aortic stenosis undergoing cardiovascular magnetic resonance with administration of gadolinium contrast were enrolled into a registry. Patients were categorized into absent, midwall, or infarct patterns of LGE by blinded independent observers. Patient follow-up was completed using patient questionnaires, source record data, and the National Strategic Tracing Service.ResultsA total of 143 patients (age 68 ± 14 years; 97 male) were followed up for 2.0 ± 1.4 years. Seventy-two underwent aortic valve replacement, and 27 died (24 cardiac, 3 sudden cardiac deaths). Compared with those with no LGE (n = 49), univariate analysis revealed that patients with midwall fibrosis (n = 54) had an 8-fold increase in all-cause mortality despite similar aortic stenosis severity and coronary artery disease burden. Patients with an infarct pattern (n = 40) had a 6-fold increase. Midwall fibrosis (hazard ratio: 5.35; 95% confidence interval: 1.16 to 24.56; p = 0.03) and ejection fraction (hazard ratio: 0.96; 95% confidence interval: 0.94 to 0.99; p = 0.01) were independent predictors of all-cause mortality by multivariate analysis.ConclusionsMidwall fibrosis was an independent predictor of mortality in patients with moderate and severe aortic stenosis. It has incremental prognostic value to ejection fraction and may provide a useful method of risk stratification. (The Prognostic Significance of Fibrosis Detection in Cardiomyopathy; NCT00930735

    Ten-year mortality, disease progression, and treatment-related side effects in men with localised prostate cancer from the ProtecT randomised controlled trial according to treatment received

    Get PDF
    Background The ProtecT trial reported intention-to-treat analysis of men with localised prostate cancer randomly allocated to active monitoring (AM), radical prostatectomy, and external beam radiotherapy. Objective To report outcomes according to treatment received in men in randomised and treatment choice cohorts. Design, setting, and participants This study focuses on secondary care. Men with clinically localised prostate cancer at one of nine UK centres were invited to participate in the treatment trial comparing AM, radical prostatectomy, and radiotherapy. Intervention Two cohorts included 1643 men who agreed to be randomised and 997 who declined randomisation and chose treatment. Outcome measurements and statistical analysis Analysis was carried out to assess mortality, metastasis and progression and health-related quality of life impacts on urinary, bowel, and sexual function using patient-reported outcome measures. Analysis was based on comparisons between groups defined by treatment received for both randomised and treatment choice cohorts in turn, with pooled estimates of intervention effect obtained using meta-analysis. Differences were estimated with adjustment for known prognostic factors using propensity scores. Results and limitations According to treatment received, more men receiving AM died of PCa (AM 1.85%, surgery 0.67%, radiotherapy 0.73%), whilst this difference remained consistent with chance in the randomised cohort (p = 0.08); stronger evidence was found in the exploratory analyses (randomised plus choice cohort) when AM was compared with the combined radical treatment group (p = 0.003). There was also strong evidence that metastasis (AM 5.6%, surgery 2.4%, radiotherapy 2.7%) and disease progression (AM 20.35%, surgery 5.87%, radiotherapy 6.62%) were more common in the AM group. Compared with AM, there were higher risks of sexual dysfunction (95% at 6 mo) and urinary incontinence (55% at 6 mo) after surgery, and of sexual dysfunction (88% at 6 mo) and bowel dysfunction (5% at 6 mo) after radiotherapy. The key limitations are the potential for bias when comparing groups defined by treatment received and changes in the protocol for AM during the lengthy follow-up required in trials of screen-detected PCa. Conclusions Analyses according to treatment received showed increased rates of disease-related events and lower rates of patient-reported harms in men managed by AM compared with men managed by radical treatment, and stronger evidence of greater PCa mortality in the AM group. Patient summary More than 95 out of every 100 men with low or intermediate risk localised prostate cancer do not die of prostate cancer within 10 yr, irrespective of whether treatment is by means of monitoring, surgery, or radiotherapy. Side effects on sexual and bladder function are better after active monitoring, but the risks of spreading of prostate cancer are more common
    corecore