278 research outputs found

    Optothermal Stability of Large ULE and Zerodur Mirrors

    Get PDF
    Marshall Space Flight Center's (MSFC) X-ray and Cryogenic Test Facility (XRCF) has tested the optothermal stability of two low-CTE, large-aperture mirrors in a thermal vacuum chamber. The mirrors deformed from several causes such as: thermal gradients, thermal soaks, coefficient of thermal expansion (CTE) gradients, CTE mismatch, and stiction. This paper focuses on how the aforementioned conditions affected the surface figure of the large optics while in vacuum at temperatures ranging from 230 to 310 K (-43 to 37 C). The presented data, conclusions, and taxonomy are useful for designing mirrors and support structures for telescopes. The data is particularly useful for telescopes that require extreme dimensional stability or telescopes that operate at a temperature far from ambient

    Two-dimensional gel proteome reference map of blood monocytes

    Get PDF
    BACKGROUND: Blood monocytes play a central role in regulating host inflammatory processes through chemotaxis, phagocytosis, and cytokine production. However, the molecular details underlying these diverse functions are not completely understood. Understanding the proteomes of blood monocytes will provide new insights into their biological role in health and diseases. RESULTS: In this study, monocytes were isolated from five healthy donors. Whole monocyte lysates from each donor were then analyzed by 2D gel electrophoresis, and proteins were detected using Sypro Ruby fluorescence and then examined for phosphoproteomes using ProQ phospho-protein fluorescence dye. Between 1525 and 1769 protein spots on each 2D gel were matched, analyzed, and quantified. Abundant protein spots were then subjected to analysis by mass spectrometry. This report describes the protein identities of 231 monocyte protein spots, which represent 164 distinct proteins and their respective isoforms or subunits. Some of these proteins had not been previously characterized at the protein level in monocytes. Among the 231 protein spots, 19 proteins revealed distinct modification by protein phosphorylation. CONCLUSION: The results of this study offer the most detailed monocyte proteomic database to date and provide new perspectives into the study of monocyte biology

    Thermal Testing of a Stacked Core Mirror for UV Applications

    Get PDF
    The ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center and ITT Exelis have developed a more cost effective process to make 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was built and tested down to 250K which would allow imaging out to 2.5 microns. This mirror was thermally tested at the Marshall Spaceflight Center to understand the thermal changes between the processing temperature of 293K and the potential low end of the operational temperature of 250K. Isothermal testing results and front plate gradient results have been evaluated and compared to analysis predictions. Measurement of gravity effects on surface figure will be compared to analytical predictions. Future testing of a larger Pathfinder mirror will also be discussed

    The Development of Stacked Core for the Fabrication of Deep Lightweight UV-Quality Space Mirrors

    Get PDF
    The 2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make 4m class or larger monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept 0.43m mirror was completed at Exelis optically tested at 250K at MSFC which demonstrated the ability for imaging out to 2.5 microns. The parameters and test results of this concept mirror are shown. The next phase of the program includes a 1.5m subscale mirror that will be optically and dynamically tested. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will be outlined

    Evidence for replicative mechanism in a CHD7 rearrangement in a patient with CHARGE syndrome

    Get PDF
    Haploinsufficiency of CHD7 (OMIM# 608892) is known to cause CHARGE syndrome (OMIM# 214800). Molecular testing supports a definitive diagnosis in approximately 65-70% of cases. Most CHD7 mutations arise de novo, and no mutations affecting exon-7 have been reported to date. We report on an 8-year-old girl diagnosed with CHARGE syndrome that was referred to our laboratory for comprehensive CHD7 gene screening. Genomic DNA from the subject with a suspected diagnosis of CHARGE was isolated from peripheral blood lymphocytes and comprehensive Sanger sequencing, along with deletion/duplication analysis of the CHD7 gene using multiplex ligation-dependent probe amplification (MLPA), was performed. MLPA analysis identified a reduced single probe signal for exon-7 of the CHD7 gene consistent with potential heterozygous deletion. Long-range PCR breakpoint analysis identified a complex genomic rearrangement (CGR) leading to the deletion of exon-7 and breakpoints consistent with a replicative mechanism such as fork stalling and template switching (FoSTeS) or microhomology-mediated break-induced replication (MMBIR). Taken together this represents the first evidence for a CHD7 intragenic CGR in a patient with CHARGE syndrome leading to what appears to be also the first report of a mutation specifically disrupting exon-7. Although likely rare, CGR may represent an overlooked mechanism in subjects with CHARGE syndrome that can be missed by current sequencing and dosage assays

    Status of the Advanced Mirror Technology Development (AMTD) Phase 2, 1.5m ULE(Registered Trademark) Mirror

    Get PDF
    The Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. Under a Phase I program, a proof of concept mirror was completed at Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. In 2014, Exelis and NASA started a Phase II program to design and build a 1.5m mirror to demonstrate lateral scalability to a 4m monolithic primary mirror. The current status of the Phase II development program will be provided along with a Phase II program summary

    Thermal Testing of a Stacked Core Mirror for UV Applications

    Get PDF
    The ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center and ITT Exelis have developed a more cost effective process to make 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was built and tested down to 250K which would allow imaging out to 2.5 microns. This mirror was thermally tested at the Marshall Spaceflight Center to understand the thermal changes between the processing temperature of 293K and the potential low end of the operational temperature of 250K. Isothermal testing results and front plate gradient results have been evaluated and compared to analysis predictions. Measurement of gravity effects on surface figure will be compared to analytical predictions. Future testing of a larger Pathfinder mirror will also be discussed
    corecore