2,554 research outputs found
Application Program Interface for the Orion Aerodynamics Database
The Application Programming Interface (API) for the Crew Exploration Vehicle (CEV) Aerodynamic Database has been developed to provide the developers of software an easily implemented, fully self-contained method of accessing the CEV Aerodynamic Database for use in their analysis and simulation tools. The API is programmed in C and provides a series of functions to interact with the database, such as initialization, selecting various options, and calculating the aerodynamic data. No special functions (file read/write, table lookup) are required on the host system other than those included with a standard ANSI C installation. It reads one or more files of aero data tables. Previous releases of aerodynamic databases for space vehicles have only included data tables and a document of the algorithm and equations to combine them for the total aerodynamic forces and moments. This process required each software tool to have a unique implementation of the database code. Errors or omissions in the documentation, or errors in the implementation, led to a lengthy and burdensome process of having to debug each instance of the code. Additionally, input file formats differ for each space vehicle simulation tool, requiring the aero database tables to be reformatted to meet the tool s input file structure requirements. Finally, the capabilities for built-in table lookup routines vary for each simulation tool. Implementation of a new database may require an update to and verification of the table lookup routines. This may be required if the number of dimensions of a data table exceeds the capability of the simulation tools built-in lookup routines. A single software solution was created to provide an aerodynamics software model that could be integrated into other simulation and analysis tools. The highly complex Orion aerodynamics model can then be quickly included in a wide variety of tools. The API code is written in ANSI C for ease of portability to a wide variety of systems. The input data files are in standard formatted ASCII, also for improved portability. The API contains its own implementation of multidimensional table reading and lookup routines. The same aerodynamics input file can be used without modification on all implementations. The turnaround time from aerodynamics model release to a working implementation is significantly reduce
Integrated Silicon Photonics for High-Speed Quantum Key Distribution
Integrated photonics offers great potential for quantum communication devices
in terms of complexity, robustness and scalability. Silicon photonics in
particular is a leading platform for quantum photonic technologies, with
further benefits of miniaturisation, cost-effective device manufacture and
compatibility with CMOS microelectronics. However, effective techniques for
high-speed modulation of quantum states in standard silicon photonic platforms
have been limited. Here we overcome this limitation and demonstrate high-speed
low-error quantum key distribution modulation with silicon photonic devices
combining slow thermo-optic DC biases and fast (10~GHz bandwidth)
carrier-depletion modulation. The ability to scale up these integrated circuits
and incorporate microelectronics opens the way to new and advanced integrated
quantum communication technologies and larger adoption of quantum-secured
communications
3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy
AbstractMechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems
Echolocation detections and digital video surveys provide reliable estimates of the relative density of harbour porpoises
Acknowledgements We would like to thank Erik Rexstad and Rob Williams for useful reviews of this manuscript. The collection of visual and acoustic data was funded by the UK Department of Energy & Climate Change, the Scottish Government, Collaborative Offshore Wind Research into the Environment (COWRIE) and Oil & Gas UK. Digital aerial surveys were funded by Moray Offshore Renewables Ltd and additional funding for analysis of the combined datasets was provided by Marine Scotland. Collaboration between the University of Aberdeen and Marine Scotland was supported by MarCRF. We thank colleagues at the University of Aberdeen, Moray First Marine, NERI, Hi-Def Aerial Surveying Ltd and Ravenair for essential support in the field, particularly Tim Barton, Bill Ruck, Rasmus Nielson and Dave Rutter. Thanks also to Andy Webb, David Borchers, Len Thomas, Kelly McLeod, David L. Miller, Dinara Sadykova and Thomas Cornulier for advice on survey design and statistical approache. Data Accessibility Data are available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.cf04gPeer reviewedPublisher PD
Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis.
OBJECTIVE: To assess the association between leucocyte telomere length and risk of cardiovascular disease. DESIGN: Systematic review and meta-analysis. DATA SOURCES: Studies published up to March 2014 identified through searches of Medline, Web of Science, and Embase. ELIGIBILITY CRITERIA: Prospective and retrospective studies that reported on associations between leucocyte telomere length and coronary heart disease (defined as non-fatal myocardial infarction, coronary heart disease death, or coronary revascularisation) or cerebrovascular disease (defined as non-fatal stroke or death from cerebrovascular disease) and were broadly representative of general populations--that is, they did not select cohort or control participants on the basis of pre-existing cardiovascular disease or diabetes. RESULTS: Twenty four studies involving 43,725 participants and 8400 patients with cardiovascular disease (5566 with coronary heart disease and 2834 with cerebrovascular disease) were found to be eligible. In a comparison of the shortest versus longest third of leucocyte telomere length, the pooled relative risk for coronary heart disease was 1.54 (95% confidence interval 1.30 to 1.83) in all studies, 1.40 (1.15 to 1.70) in prospective studies, and 1.80 (1.32 to 2.44) in retrospective studies. Heterogeneity between studies was moderate (I(2) = 64%, 41% to 77%, Phet<0.001) and was not significantly explained by mean age of participants (P = 0.23), the proportion of male participants (P = 0.45), or distinction between retrospective versus prospective studies (P = 0.32). Findings for coronary heart disease were similar in meta-analyses restricted to studies that adjusted for conventional vascular risk factors (relative risk 1.42, 95% confidence interval 1.17 to 1.73); studies with ≥ 200 cases (1.44, 1.20 to 1.74); studies with a high quality score (1.53, 1.22 to 1.92); and in analyses that corrected for publication bias (1.34, 1.12 to 1.60). The pooled relative risk for cerebrovascular disease was 1.42 (1.11 to 1.81), with no significant heterogeneity between studies (I(2) = 41%, 0% to 72%, Phet = 0.08). Shorter telomeres were not significantly associated with cerebrovascular disease risk in prospective studies (1.14, 0.85 to 1.54) or in studies with a high quality score (1.21, 0.83 to 1.76). CONCLUSION: Available observational data show an inverse association between leucocyte telomere length and risk of coronary heart disease independent of conventional vascular risk factors. The association with cerebrovascular disease is less certain
Shock Breakout in Core-Collapse Supernovae and its Neutrino Signature
(Abridged) We present results from dynamical models of core-collapse
supernovae in one spatial dimension, employing a newly-developed Boltzmann
neutrino radiation transport algorithm, coupled to Lagrangean hydrodynamics and
a consistent high-density nuclear equation of state. We focus on shock breakout
and its neutrino signature and follow the dynamical evolution of the cores of
11 M_sun, 15 M_sun, and 20 M_sun progenitors through collapse and the first 250
milliseconds after bounce. We examine the effects on the emergent neutrino
spectra, light curves, and mix of species of artificial opacity changes, the
number of energy groups, the weak magnetism/recoil corrections, nucleon-nucleon
bremsstrahlung, neutrino-electron scattering, and the compressibility of
nuclear matter. Furthermore, we present the first high-resolution look at the
angular distribution of the neutrino radiation field both in the
semi-transparent regime and at large radii and explore the accuracy with which
our tangent-ray method tracks the free propagation of a pulse of radiation in a
near vacuum. Finally, we fold the emergent neutrino spectra with the
efficiencies and detection processes for a selection of modern underground
neutrino observatories and argue that the prompt electron-neutrino breakout
burst from the next galactic supernova is in principle observable and usefully
diagnostic of fundamental collapse/supernova behavior. Though we are not in
this study focusing on the supernova mechanism per se, our simulations support
the theoretical conclusion (already reached by others) that spherical (1D)
supernovae do not explode when good physics and transport methods are employed.Comment: 16 emulateapj pages, plus 24 postscript figures, accepted to The
Astrophysical Journal; text revised; neutrino oscillation section expanded;
Fig. 22 correcte
Advection, diffusion and delivery over a network
Many biological, geophysical and technological systems involve the transport
of resource over a network. In this paper we present an algorithm for
calculating the exact concentration of resource at any point in space or time,
given that the resource in the network is lost or delivered out of the network
at a given rate, while being subject to advection and diffusion. We consider
the implications of advection, diffusion and delivery for simple models of
glucose delivery through a vascular network, and conclude that in certain
circumstances, increasing the volume of blood and the number of glucose
transporters can actually decrease the total rate of glucose delivery. We also
consider the case of empirically determined fungal networks, and analyze the
distribution of resource that emerges as such networks grow over time. Fungal
growth involves the expansion of fluid filled vessels, which necessarily
involves the movement of fluid. In three empirically determined fungal networks
we found that the minimum currents consistent with the observed growth would
effectively transport resource throughout the network over the time-scale of
growth. This suggests that in foraging fungi, the active transport mechanisms
observed in the growing tips may not be required for long range transport.Comment: 54 pages including appendix, 10 figure
Recognizing Structural Nonidentifiability: When Experiments Do Not Provide Information About Important Parameters and Misleading Models Can Still Have Great Fit
This is the peer reviewed version of the following article: Schmidt, P. J., Emelko, M. B., & Thompson, M. E. (2020). Recognizing Structural Nonidentifiability: When Experiments Do Not Provide Information About Important Parameters and Misleading Models Can Still Have Great Fit. Risk Analysis, 40(2), 352–369, which has been published in final form at https://doi.org/10.1111/risa.13386. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.In the quest to model various phenomena, the foundational importance of parameter identifiability to sound statistical modeling may be less well appreciated than goodness of fit. Identifiability concerns the quality of objective information in data to facilitate estimation of a parameter, while nonidentifiability means there are parameters in a model about which the data provide little or no information. In purely empirical models where parsimonious good fit is the chief concern, nonidentifiability (or parameter redundancy) implies overparameterization of the model. In contrast, nonidentifiability implies underinformativeness of available data in mechanistically derived models where parameters are interpreted as having strong practical meaning. This study explores illustrative examples of structural nonidentifiability and its implications using mechanistically derived models (for repeated presence/absence analyses and dose–response of Escherichia coli O157:H7 and norovirus) drawn from quantitative microbial
risk assessment. Following algebraic proof of nonidentifiability in these examples, profile likelihood analysis and Bayesian Markov Chain Monte Carlo with uniform priors are illustrated as tools to help detect model parameters that are not strongly identifiable. It is shown that identifiability should be considered during experimental design and ethics approval to ensure generated data can yield strong objective information about all mechanistic parameters of interest. When Bayesian methods are applied to a nonidentifiable model, the subjective prior effectively fabricates information about any parameters about which the data carry no objective information. Finally, structural nonidentifiability can lead to spurious models that fit data well but can yield severely flawed inferences and predictions when they are interpreted or used inappropriately.Natural Sciences and Engineering Research Council of Canada (NSERC), RGPIN-2016-04655 || Alberta Innovates, Grant 3360-E086
- …