70 research outputs found

    Fabrication and Microstructure Evaluation of Fibrous Composite for Acetabular Labrum Implant

    Get PDF
    This paper will report the fabrication process and microstructure analysis of fibrous composite incorporating ultra-high molecular weight polyethylene (UHMWPE) fabric, electrospun polycaprolactone (PCL), and bioglass particles. Briefly, electrospinning was performed to form PCL fibre lamination in the surface of UHMWPE fabric. This UHMWPE/PCL material was then bioglass-coated. Sequentially, microstructure of the UHMWPE fabric, UHMWPE/PCL, and UHMWPE/PCL/bioglass was imaged and analysed. The composite showed aligned ultrafine PCL fibres and distribution of bioglass particles in the layer of electrospun PCL. The results of this study provide groundwork for more advanced investigation, as well as development of implant prototype

    Nutrient enrichment alters seasonal ÎČ-diversity in global grasslands

    Get PDF
    Intra-annual (i.e. seasonal) temporal niche partitioning is essential to the maintenance of biodiversity in many plant communities. However, understanding of how climate and global change drivers such as eutrophication influence seasonal niche partitioning in plant assemblages remains limited. We used early-season and late-season compositional data collected from 10 grassland sites around the world to explore relationships between climate variability and intra-annual species segregation (i.e. seasonal ÎČ-diversity) and to assess how nutrient enrichment alters seasonal ÎČ-diversity in plant communities. We then assessed whether changes in seasonal ÎČ-diversity in response to nutrient enrichment are underpinned by species turnover or nestedness and determined how specific functional groups (i.e. annual forbs, perennial forbs, C3 and C4 graminoids and legumes) respond to eutrophication within and across early and late sampling dates. We found a positive relationship between intra-annual temperature variability and seasonal ÎČ-diversity but observed no relationship between intra-annual precipitation variability and seasonal ÎČ-diversity. Nutrient enrichment increased seasonal ÎČ-diversity and increased turnover of species between early- and late-season communities. Nutrient enrichment reduced the abundance of C4 graminoids and legumes within and across sampling timepoints and eliminated intra-annual differences in these groups. In contrast, nutrient enrichment resulted in seasonal differences in C3 graminoids, which were not observed in control conditions and increased abundance of C3 graminoids and annual forbs within and across early and late sampling dates. Synthesis: Our understanding of how grasslands respond to various components of global change is primarily based on studies that document community changes at inter-annual scales. Using early-season and late-season compositional data from 10 grassland sites around the world, we show that nutrient enrichment increases seasonal ÎČ-diversity and alters intra-annual dynamics of specific functional groups in unique ways

    The Type 2 Diabetes Knowledge Portal: an Open access Genetic Resource Dedicated to Type 2 Diabetes and Related Traits

    Get PDF
    Associations between human genetic variation and clinical phenotypes have become a foundation of biomedical research. Most repositories of these data seek to be disease-agnostic and therefore lack disease-focused views. The Type 2 Diabetes Knowledge Portal (T2DKP) is a public resource of genetic datasets and genomic annotations dedicated to type 2 diabetes (T2D) and related traits. Here, we seek to make the T2DKP more accessible to prospective users and more useful to existing users. First, we evaluate the T2DKP\u27s comprehensiveness by comparing its datasets with those of other repositories. Second, we describe how researchers unfamiliar with human genetic data can begin using and correctly interpreting them via the T2DKP. Third, we describe how existing users can extend their current workflows to use the full suite of tools offered by the T2DKP. We finally discuss the lessons offered by the T2DKP toward the goal of democratizing access to complex disease genetic results

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Testing a global standard for quantifying species recovery and assessing conservation impact.

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Advances in hydrogels applied to degenerative diseases

    No full text
    Hydrogels are currently applied in the treatment of numerous degenerative diseases because of their three dimensional (3D) nature, high water content and wide range of polymers that can be used for their fabrication. Hydrogels have been investigated and commercialized, for example, as soft contact lens-based ophthalmic drug delivery systems. These novel devices improved the bioavailability of ophthalmic drugs and their residence time. Hydrogels are also being investigated to facilitate and augment targeted delivery of chemotherapeutic agents. This approach minimizes significantly the side effects associated with conventional administration of anti-cancer therapeutics. The application of hydrogels as 3D scaffold has recently gained momentum because they can mimic key features of the extracellular matrix. For this reason, hydrogels are representing a viable alternative to traditional tumor xenograft in cancer biology studies. This review highlights recent advances in the development of hydrogels that are applied in degenerative diseases such as ocular, cancer, spine and cartilage degenerative pathologies

    The Effect of Rotating Collector Design on Tensile Properties and Morphology of Electrospun Polycaprolactone Fibres

    No full text
    Electrospinning is a technique that can produce fibres in the nanoscale range. This process is useful for many applications, including fabrication of fibrous scaffolds for fibrocartilage tissue engineering. For this application, cell attachment and tissue development is influenced by fibre morphology and mechanical properties. This electrospinning study investigated the influence of rotating collector design on morphology and mechanical properties of electrospun polycaprolactone fibre. The experiment employed 4 mandrel designs: 1) full surface of aluminium; 2) with gap feature; 3) with gap feature and teflon support; 4) with gap feature and tape support. The highest elastic modulus was obtained from mandrel with gap and tape support, which was 24.6 MPa and significantly higher compared to fibres acquired from other collector designs. Fibre diameter attained was identical across the different collectors, ranging from 0.5 - 2 ÎŒm. Gap introduction showed enhanced alignment in the resultant fibre. It can be concluded that fibre alignment and tensile properties can be improved by simply modifying the collector design. This improved fibre mat can be developed as a biomaterial for fibrocartilage tissue engineering scaffolds
    • 

    corecore