168 research outputs found

    ORIENTATION AND ANATOMICAL NOTATION IN CONODONTS

    Get PDF

    Sedimentary carbon on the continental shelf : emerging capabilities and research priorities for Blue Carbon.

    Get PDF
    This work was supported by Cefas internal Seedcorn self-investment funding under the project DP440: Blue carbon within climate mitigation and ecosystem service approaches to natural asset assessments, and by Cefas’ Ecosystem Theme science theme.Continental shelf sediments store large amounts of organic carbon. Protecting this carbon from release back into the marine system and managing the marine environment to maximize its rate of accumulation could both play a role in mitigating against climate change. For these reasons, in the context of an expanding ‘Blue Carbon’ concept, research interest in the quantity and vulnerability of carbon stored in continental shelf, slope, and deep ocean sediments is increasing. In these systems, carbon storage is physically distant from carbon sources, altered between source and sink, and disturbed by anthropogenic activities. The methodological approaches needed to obtain the evidence to assess shelf sea sediment carbon manageability and vulnerability within an evolving blue carbon framework cannot be transferred directly from those applied in coastal vegetated ‘traditional’ blue carbon habitats. We present a ‘toolbox’ of methods which can be applied in marine sediments to provide the evidence needed to establish where and when marine carbon in offshore sediments can contribute to climate mitigation, focusing on continental shelf sediments. These methods are discussed in the context of the marine carbon cycle and how they provide evidence on: (i) stock: how much carbon is there and how is it distributed? (ii) accumulation: how rapidly is carbon being added or removed? and (iii) anthropogenic pressures: is carbon stock and/or accumulation vulnerable to manageable human activities? Our toolbox provides a starting point to inform choice of techniques for future studies alongside consideration of their specific research questions and available resources. Where possible a stepwise approach to analyses should be applied in which initial parameters are analysed to inform which samples, if any, will provide information of interest from more resource-intensive analyses. As studies increasingly address the knowledge gaps around continental shelf carbon stocks and accumulation – through both sampling and modelling – the management of this carbon with respect to human pressures will become the key question for understanding where it fits within the blue carbon framework and within the climate mitigation discourse.Publisher PDFPeer reviewe

    Inspiring STEM undergraduates to tackle the AMR crisis

    Get PDF
    To address the growing problem of antimicrobial resistance (AMR), it is necessary to invest in, inspire and attract future generations of scientists to this research area. Undergraduate education should be a focus for attention and efforts should be made to ensure that students are afforded opportunities to actively engage with AMR. We illustrate how as a topic AMR provides opportunities to deliver effective research-led teaching in addition to traditional teaching methods. We have used a selection of case studies to illustrate how students can be engaged with AMR using a variety of research-led approaches to develop the required skills for biology-centric students. In addition, we indicate how these skills map to the UK Quality Assurance Framework and the Vision and Change report developed by the American Association for the Advancement of Science

    Not a Second Time? John Lennon’s Aeolian Cadence Reconsidered

    Get PDF
    In 1963 William Mann coined the term “aeolian cadence” to describe a harmonic progression in the song “Not a Second Time” by the Beatles. This term has caused confusion ever since. In this article, I discuss why Mann might have used this confusing phrase and how it relates to this song by John Lennon. I will argue that, in the debate that ensued from Mann’s observations, his commentators were primarily preoccupied with terminology and definitions but forgot to listen to Lennon. More specifically, I argue that, if the interplay between the music and lyrics is considered, the famous cadence in “Not a Second Time” can best be interpreted as “deceptive.

    ActEarly: a City Collaboratory approach to early promotion of good health and wellbeing.

    Get PDF
    Economic, physical, built, cultural, learning, social and service environments have a profound effect on lifelong health. However, policy thinking about health research is dominated by the 'biomedical model' which promotes medicalisation and an emphasis on diagnosis and treatment at the expense of prevention. Prevention research has tended to focus on 'downstream' interventions that rely on individual behaviour change, frequently increasing inequalities. Preventive strategies often focus on isolated leverage points and are scattered across different settings. This paper describes a major new prevention research programme that aims to create City Collaboratory testbeds to support the identification, implementation and evaluation of upstream interventions within a whole system city setting. Prevention of physical and mental ill-health will come from the cumulative effect of multiple system-wide interventions. Rather than scatter these interventions across many settings and evaluate single outcomes, we will test their collective impact across multiple outcomes with the goal of achieving a tipping point for better health. Our focus is on early life (ActEarly) in recognition of childhood and adolescence being such critical periods for influencing lifelong health and wellbeing

    Four priority areas to advance invasion science in the face of rapid environmental change

    Get PDF
    Unprecedented rates of introduction and spread of non-native species pose burgeoning challenges to biodiversity, natural resource management, regional economies, and human health. Current biosecurity efforts are failing to keep pace with globalization, revealing critical gaps in our understanding and response to invasions. Here, we identify four priority areas to advance invasion science in the face of rapid global environmental change. First, invasion science should strive to develop a more comprehensive framework for predicting how the behavior, abundance, and interspecific interactions of non-native species vary in relation to conditions in receiving environments and how these factors govern the ecological impacts of invasion. A second priority is to understand the potential synergistic effects of multiple co-occurring stressors— particularly involving climate change—on the establishment and impact of non-native species. Climate adaptation and mitigation strategies will need to consider the possible consequences of promoting non-native species, and appropriate management responses to non-native species will need to be developed. The third priority is to address the taxonomic impediment. The ability to detect and evaluate invasion risks is compromised by a growing deficit in taxonomic expertise, which cannot be adequately compensated by new molecular technologies alone. Management of biosecurity risks will become increasingly challenging unless academia, industry, and governments train and employ new personnel in taxonomy and systematics. Fourth, we recommend that internationally cooperative biosecurity strategies consider the bridgehead effects of global dispersal networks, in which organisms tend to invade new regions from locations where they have already established. Cooperation among countries to eradicate or control species established in bridgehead regions should yield greater benefit than independent attempts by individual countries to exclude these species from arriving and establishing
    • 

    corecore