129 research outputs found

    A Novel PANK2 Mutation in a Patient with Atypical Pantothenate-Kinase-Associated Neurodegeneration Presenting with Adult-Onset Parkinsonism

    Get PDF
    BACKGROUND: Pantothenate-kinase-associated neurodegeneration (PKAN) is an autosomal recessive neurodegenerative disorder that is characterized by progressive extrapyramidal signs, visual loss, and cognitive impairment. PKAN is caused by mutations in the pantothenate kinase gene (PANK2), which is located on chromosome 20p13 and encodes pantothenate kinase, the key regulatory enzyme in coenzyme-A biosynthesis. CASE REPORT: In this report we describe a case of atypical PKAN with a novel PANK2 mutation, presenting with a 10-year history of postural tremor involving both hands. Upon neurological examination, the patient's face was masked and he spoke in a monotonous voice. The patient presented with mild bradykinesia and rigidity that involved all of the extremities. Horizontal saccadic eye movements were slow and fragmented. Brain MRI revealed a typical "eye-of-the-tiger" sign. A mutation analysis revealed three PANK2 mutations: two in exon 3 (Asp 378Gly and Leu385CysfsX13) and one in exon 4 (Arg440Pro). CONCLUSIONS: Parkinsonism is not an unusual presenting symptom in patients with atypical PKAN, and so it is important for physicians to consider PKAN in the differential diagnosis of patients presenting with young-onset parkinsonism.ope

    Comparison of Endothelial Progenitor Cells in Parkinson's Disease Patients Treated with Levodopa and Levodopa/COMT Inhibitor

    Get PDF
    BACKGROUND: Levodopa treatment in Parkinson's disease (PD) increases in serum homocysteine levels due to its metabolism via catechol O-methyltransferase. Endothelial progenitor cells (EPCs) have the capacity to differentiate into mature endothelial cells and are markers for endothelial functions and cardiovascular risks. Along with traditional vascular risk factors, hyperhomocysteinemia is known to decrease the level of EPCs. In the present study, we hypothesized that that levodopa-induced hyperhomocysteinemia leads to a change in EPC levels. METHODOLOGY/PRINCIPAL FINDINGS: We prospectively enrolled PD patients who had been prescribed either levodopa/carbidopa (PD-L group, n = 28) or levodopa/carbidopa/COMT inhibitor (PD-LC group, n = 25) for more than 1 year. The number of circulating EPCs was measured by flow cytometry using dual staining of anti-CD34 and anti-KDR antibodies. The EPCs were divided into tertiles based on their distributions and a logistic regression analysis was used to estimate independent predictors of the highest tertile of EPCs. The number of endothelial progenitor cells was significantly decreased in PD-L patients (118±99/mL) compared with either PD-LC patients (269±258/mL, p = 0.007) or controls (206±204/mL, p = 0.012). The level of homocysteine was significantly increased in PD-L patients (14.9±5.3 µmol/L) compared with either PD-LC patients (11.9±3.0 µmol/L, p = 0.028) or controls (11.1±2.5 µmol/L, p = 0.012). The level of homocysteine was negatively correlated with endothelial progenitor cell levels (r = -0.252, p = 0.028) and was an independent predictor of the highest tertile of endothelial progenitor cell levels (OR; 0.749 [95% CI: 0.584-0.961]). CONCLUSIONS/SIGNIFICANCE: These data indicate that a higher consumption of EPC for restoration of endothelial damage may be associated with chronic levodopa treatment in PD patients

    Uric acid regulates α-synuclein transmission in Parkinsonian models

    Get PDF
    Ample evidence demonstrates that α-synuclein (α-syn) has a critical role in the pathogenesis of Parkinson’s disease (PD) with evidence indicating that its propagation from one area of the brain to others may be the primary mechanism for disease progression. Uric acid (UA), a natural antioxidant, has been proposed as a potential disease modifying candidate in PD. In the present study, we investigated whether UA treatment modulates cell-to-cell transmission of extracellular α-syn and protects dopaminergic neurons in the α-syn-enriched model. In a cellular model, UA treatment decreased internalized cytosolic α-syn levels and neuron-to-neuron transmission of α-syn in donor-acceptor cell models by modulating dynamin-mediated and clathrin-mediated endocytosis. Moreover, UA elevation in α-syn-inoculated mice inhibited propagation of extracellular α-syn which decreased expression of phosphorylated α-syn in the dopaminergic neurons of the substantia nigra leading to their increased survival. UA treatment did not lead to change in markers related with autophagolysosomal and microglial activity under the same experimental conditions. These findings suggest UA may control the pathological conditions of PD via additive mechanisms which modulate the propagation of α-syn

    Parkinsonism Associated with Glucocerebrosidase Mutation

    Get PDF
    BACKGROUND: Gaucher's disease is an autosomal recessive, lysosomal storage disease caused by mutations of the β-glucocerebrosidase gene (GBA). There is increasing evidence that GBA mutations are a genetic risk factor for the development of Parkinson's disease (PD). We report herein a family of Koreans exhibiting parkinsonism-associated GBA mutations. CASE REPORT: A 44-year-old woman suffering from slowness and paresthesia of the left arm for the previous 1.5years, visited our hospital to manage known invasive ductal carcinoma. During a preoperative evaluation, she was diagnosed with Gaucher's disease and double mutations of S271G and R359X in GBA. Parkinsonian features including low amplitude postural tremors, rigidity, bradykinesia and shuffling gait were observed. Genetic analysis also revealed that her older sister, who had also been diagnosed with PD and had been taking dopaminergic drugs for 8-years, also possessed a heterozygote R359X mutation in GBA. (18)F-fluoropropylcarbomethoxyiodophenylnortropane positron-emission tomography in these patients revealed decreased uptake of dopamine transporter in the posterior portion of the bilateral putamen. CONCLUSIONS: This case study demonstrates Korean familial cases of PD with heterozygote mutation of GBA, further supporting the association between PD and GBA mutation.ope

    Association of β-Amyloid and Basal Forebrain With Cortical Thickness and Cognition in Alzheimer and Lewy Body Disease Spectra

    Get PDF
    [Objective] Cholinergic degeneration and β-amyloid contribute to brain atrophy and cognitive dysfunction in Alzheimer disease (AD) and Lewy body disease (LBD), but their relationship has not been comparatively evaluated.[Methods] In this cross-sectional study, we recruited 28 normal controls (NC), 55 patients with AD mild cognitive impairment (MCI), 34 patients with AD dementia, 28 patients with LBD MCI, and 51 patients with LBD dementia. Participants underwent cognitive evaluation, brain MRI to measure the basal forebrain (BF) volume and global cortical thickness (CTh), and 18F-florbetaben (FBB) PET to measure the standardized uptake value ratio (SUVR). Using general linear models and path analyses, we evaluated the association of FBB-SUVR and BF volume with CTh or cognitive dysfunction in the AD spectrum (AD and NC) and LBD spectrum (LBD and NC), respectively. Covariates included age, sex, education, deep and periventricular white matter hyperintensities, intracranial volume, hypertension, diabetes, and hyperlipidemia.[Results] BF volume mediated the association between FBB-SUVR and CTh in both the AD and LBD spectra, while FBB-SUVR was associated with CTh independently of BF volume only in the LBD spectrum. Significant correlation between voxel-wise FBB-SUVR and CTh was observed only in the LBD group. FBB-SUVR was independently associated with widespread cognitive dysfunction in both the AD and LBD spectra, especially in the memory domain (standardized beta [B] for AD spectrum = −0.60, B for LBD spectrum = −0.33). In the AD spectrum, BF volume was associated with memory dysfunction (B = 0.18), and CTh was associated with language (B = 0.21) and executive (B = 0.23) dysfunction. In the LBD spectrum, however, BF volume and CTh were independently associated with widespread cognitive dysfunction.[Conclusions] There is a common β-amyloid–related degenerative mechanism with or without the mediation of BF in the AD and LBD spectra, while the association of BF atrophy with cognitive dysfunction is more profound and there is localized β-amyloid–cortical atrophy interaction in the LBD spectrum.Peer reviewe

    Bone Marrow-Derived Mesenchymal Stem Cell Therapy as a Candidate Disease-Modifying Strategy in Parkinson's Disease and Multiple System Atrophy

    Get PDF
    Parkinson's disease (PD) and multiple system atrophy (MSA) are neurodegenerative diseases representative of α-synucleinopathies characterized pathologically by α-synuclein-abundant Lewy bodies and glial cytoplasmic inclusions, respectively. Embryonic stem cells, fetal mesencephalic neurons, and neural stem cells have been introduced as restorative strategies in PD animals and patients, but ethical and immunological problems as well as the serious side effects of tumorigenesis and disabling dyskinesia have limited clinical application of these stem cells. Meanwhile, cell therapy using mesenchymal stem cells (MSCs) is attractive clinically because these cells are free from ethical and immunological problems. MSCs are present in adult bone marrow and represent <0.01% of all nucleated bone marrow cells. MSCs are themselves capable of multipotency, differentiating under appropriate conditions into chondrocytes, skeletal myocytes, and neurons. According to recent studies, the neuroprotective effect of MSCs is mediated by their ability to produce various trophic factors that contribute to functional recovery, neuronal cell survival, and stimulation of endogenous regeneration and by immunoregulatory properties that not only inhibit nearly all cells participating in the immune response cell-cell-contact-dependent mechanism, but also release various soluble factors associated with immunosuppressive activity. However, the use of MSCs as neuroprotectives in PD and MSA has seldom been studied. Here we comprehensively review recent advances in the therapeutic roles of MSCs in PD and MSA, especially focusing on their neuroprotective properties and use in disease-modifying therapeutic strategies
    corecore