30 research outputs found

    ISCOMATRIX vaccines mediate CD8+ T-cell cross-priming by a MyD88-dependent signaling pathway

    Get PDF
    Generating a cytotoxic CD8+ T-cell response that can eradicate malignant cells is the primary objective of cancer vaccine strategies. In this study we have characterized the innate and adaptive immune response to the ISCOMATRIX adjuvant, and the ability of vaccine antigens formulated with this adjuvant to promote antitumor immunity. ISCOMATRIX adjuvant led to a rapid innate immune cell response at the injection site, followed by the activation of natural killer and dendritic cells (DC) in regional draining lymph nodes. Strikingly, major histocompatibility complex (MHC) class I cross-presentation by CD8α+ and CD8α− DCs was enhanced by up to 100-fold when antigen was formulated with ISCOMATRIX adjuvant. These coordinated features enabled efficient CD8+ T-cell cross-priming, which exhibited prophylactic and therapeutic tumoricidal activity. The therapeutic efficacy of an ISCOMATRIX vaccine was further improved when co-administered with an anti-CD40 agonist antibody, suggesting that ISCOMATRIX-based vaccines may combine favorably with other immune modifiers in clinical development to treat cancer. Finally, we identified a requirement for the myeloid differentiation primary response gene 88 (MyD88) adapter protein for both innate and adaptive immune responses to ISCOMATRIX vaccines in vivo. Taken together, our findings support the utility of the ISCOMATRIX adjuvant for use in the development of novel vaccines, particularly those requiring strong CD8+ T-cell immune responses, such as therapeutic cancer vaccines

    Glycan shifting on hepatitis C virus (HCV) E2 glycoprotein is a mechanism for escape from broadly neutralizing antibodies

    Get PDF
    Hepatitis C virus (HCV) infection is a major cause of liver disease and hepatocellular carcinoma. Glycan shielding has been proposed to be a mechanism by which HCV masks broadly neutralizing epitopes on its viral glycoproteins. However, the role of altered glycosylation in HCV resistance to broadly neutralizing antibodies is not fully understood. Here, we have generated potent HCV neutralizing antibodies hu5B3.v3 and MRCT10.v362 that, similar to the previously described AP33 and HCV1, bind to a highly conserved linear epitope on E2. We utilize a combination of in vitro resistance selections using the cell culture infectious HCV and structural analyses to identify mechanisms of HCV resistance to hu5B3.v3 and MRCT10.v362. Ultra deep sequencing from in vitro HCV resistance selection studies identified resistance mutations at asparagine N417 (N417S, N417T and N417G) as early as 5 days post treatment. Comparison of the glycosylation status of soluble versions of the E2 glycoprotein containing the respective resistance mutations revealed a glycosylation shift from N417 to N415 in the N417S and N417T E2 proteins. The N417G E2 variant was glycosylated neither at residue 415 nor at residue 417 and remained sensitive to MRCT10.v362. Structural analyses of the E2 epitope bound to hu5B3.v3 Fab and MRCT10.v362 Fab using X-ray crystallography confirmed that residue N415 is buried within the antibody–peptide interface. Thus, in addition to previously described mutations at N415 that abrogate the β-hairpin structure of this E2 linear epitope, we identify a second escape mechanism, termed glycan shifting, that decreases the efficacy of broadly neutralizing HCV antibodies

    Resilience, resistance, infrapolitics and enmeshment

    Get PDF
    A great deal has been written in the International Relations literature about the role of resilience in our social world. One of the central debates in the scholarship concerns the relationship between resilience and resistance, which several scholars consider to be one of mutual exclusivity. For many theorists, an individual or a society can either be resilient or resistant, but not both. In this article, we argue that this understanding of the resilience–resistance connection suffers from three interrelated problems: it treats resilience and resistance as binary concepts rather than processes; it presents a simplistic conception of resilient subjects as apolitical subjects; and it eschews the ‘transformability’ aspect of resilience. In a bid to resolve these issues, the article advocates for the usefulness of a relational approach to the processes of resilience and resistance, and suggests an approach that understands resilience and resistance as engaged in mutual assistance rather than mutual exclusion. The case of the Palestinian national liberation movement illustrates our set of arguments

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF

    Prefrontal inefficiency is associated with polygenic risk for schizophrenia

    No full text
    textabstractConsidering the diverse clinical presentation and likely polygenic etiology of schizophrenia, this investigation examined the effect of polygenic risk on a well-established intermediate phenotype for schizophrenia. We hypothesized that a measure of cumulative genetic risk based on additive effects of many genetic susceptibility loci for schizophrenia would predict prefrontal cortical inefficiency during working memory, a brain-based biomarker for the disorder. The present study combined imaging, genetic and behavioral data obtained by the Mind Clinical Imaging Consortium study of schizophrenia (n = 255). For each participant, we derived a polygenic risk score (PGRS), which was based on over 600 nominally significant single nucleotide polymorphisms, associated with schizophrenia in a separate discovery sample comprising 3322 schizophrenia patients and 3587 control participants. Increased polygenic risk for schizophrenia was associated with neural inefficiency in the left dorsolateral prefrontal cortex after covarying for the effects of acquisition site, diagnosis, and population stratification. We also provide additional supporting evidence for our original findings using scores based on results from the Psychiatric Genomics Consortium study. Gene ontology analysis of the PGRS highlighted genetic loci involved in brain development and several other processes possibly contributing to disease etiology. Our study permits new insights into the additive effect of hundreds of genetic susceptibility loci on a brain-based intermediate phenotype for schizophrenia. The combined impact of many common genetic variants of small effect are likely to better reveal etiologic mechanisms of the disorder than the study of single common genetic variants

    Prefrontal inefficiency is associated with polygenic risk for schizophrenia

    No full text
    Considering the diverse clinical presentation and likely polygenic etiology of schizophrenia, this investigation examined the effect of polygenic risk on a well-established intermediate phenotype for schizophrenia. We hypothesized that a measure of cumulative genetic risk based on additive effects of many genetic susceptibility loci for schizophrenia would predict prefrontal cortical inefficiency during working memory, a brain-based biomarker for the disorder. The present study combined imaging, genetic and behavioral data obtained by the Mind Clinical Imaging Consortium study of schizophrenia (n = 255). For each participant, we derived a polygenic risk score (PGRS), which was based on over 600 nominally significant single nucleotide polymorphisms, associated with schizophrenia in a separate discovery sample comprising 3322 schizophrenia patients and 3587 control participants. Increased polygenic risk for schizophrenia was associated with neural inefficiency in the left dorsolateral prefrontal cortex after covarying for the effects of acquisition site, diagnosis, and population stratification. We also provide additional supporting evidence for our original findings using scores based on results from the Psychiatric Genomics Consortium study. Gene ontology analysis of the PGRS highlighted genetic loci involved in brain development and several other processes possibly contributing to disease etiology. Our study permits new insights into the additive effect of hundreds of genetic susceptibility loci on a brain-based intermediate phenotype for schizophrenia. The combined impact of many common genetic variants of small effect are likely to better reveal etiologic mechanisms of the disorder than the study of single common genetic variants
    corecore