55 research outputs found

    Chemical evidence for the tradeoff-in-the-nephron hypothesis to explain secondary hyperparathyroidism

    Get PDF
    Background Secondary hyperparathyroidism (SHPT) complicates advanced chronic kidney disease (CKD) and causes skeletal and other morbidity. In animal models of CKD, SHPT was prevented and reversed by reduction of dietary phosphate in proportion to GFR, but the phenomena underlying these observations are not understood. The tradeoff-in-the-nephron hypothesis states that as GFR falls, the phosphate concentration in the distal convoluted tubule ([P]DCT]) rises, reduces the ionized calcium concentration in that segment ([Ca++]DCT), and thereby induces increased secretion of parathyroid hormone (PTH) to maintain normal calcium reabsorption. In patients with CKD, we previously documented correlations between [PTH] and phosphate excreted per volume of filtrate (EP/Ccr), a surrogate for [P]DCT. In the present investigation, we estimated [P]DCT from physiologic considerations and measurements of phosphaturia, and sought evidence for a specific chemical phenomenon by which increased [P]DCT could lower [Ca++]DCT and raise [PTH]. Methods and findings We studied 28 patients (“CKD”) with eGFR of 14–49 mL/min/1.73m2 (mean 29.9 ± 9.5) and 27 controls (“CTRL”) with eGFR > 60 mL/min/1.73m2 (mean 86.2 ± 10.2). In each subject, total [Ca]DCT and [P]DCT were deduced from relevant laboratory data. The Joint Expert Speciation System (JESS) was used to calculate [Ca++]DCT and concentrations of related chemical species under the assumption that a solid phase of amorphous calcium phosphate (Ca3(PO4)2 (am., s.)) could precipitate. Regressions of [PTH] on eGFR, [P]DCT, and [Ca++]DCT were then examined. At filtrate pH of 6.8 and 7.0, [P]DCT was found to be the sole determinant of [Ca++]DCT, and precipitation of Ca3(PO4)2 (am., s.) appeared to mediate this result. At pH 6.6, total [Ca]DCT was the principal determinant of [Ca++]DCT, [P]DCT was a minor determinant, and precipitation of Ca3(PO4)2 (am., s.) was predicted in no CKD and five CTRL. In CKD, at all three pH values, [PTH] varied directly with [P]DCT and inversely with [Ca++]DCT, and a reduced [Ca++]DCT was identified at which [PTH] rose unequivocally. Relationships of [PTH] to [Ca++]DCT and to eGFR resembled each other closely. Conclusions As [P]DCT increases, chemical speciation calculations predict reduction of [Ca++]DCT through precipitation of Ca3(PO4)2 (am., s.). [PTH] appears to rise unequivocally if [Ca++]DCT falls sufficiently. These results support the tradeoff-in-the-nephron hypothesis, and they explain why proportional phosphate restriction prevented and reversed SHPT in experimental CKD. Whether equally stringent treatment can be as efficacious in humans warrants investigation

    States on pseudo effect algebras and integrals

    Full text link
    We show that every state on an interval pseudo effect algebra EE satisfying some kind of the Riesz Decomposition Properties (RDP) is an integral through a regular Borel probability measure defined on the Borel σ\sigma-algebra of a Choquet simplex KK. In particular, if EE satisfies the strongest type of (RDP), the representing Borel probability measure can be uniquely chosen to have its support in the set of the extreme points of $K.

    The Lattice and Simplex Structure of States on Pseudo Effect Algebras

    Full text link
    We study states, measures, and signed measures on pseudo effect algebras with some kind of the Riesz Decomposition Property, (RDP). We show that the set of all Jordan signed measures is always an Abelian Dedekind complete ℓ\ell-group. Therefore, the state space of the pseudo effect algebra with (RDP) is either empty or a nonempty Choquet simplex or even a Bauer simplex. This will allow represent states on pseudo effect algebras by standard integrals

    Spatial distribution of bivalves in relation to environmental conditions (middle Danube catchment, Hungary)

    Get PDF
    The spatial distribution of bivalves in relation to environmental conditions was studied along a second- and third order stream – medium-sized river (River Ipoly) – large river (River Danube) continuum in the Hungarian Danube River system. Quantitative samples were collected four times in 2007 and a total of 1662 specimens, belonging to 22 bivalve species were identified. Among these species, two are endangered (Pseudanodonta complanata, Unio crassus) and five are invasive (Dreissena polymorpha, D. rostriformis bugensis, Corbicula fluminea, C. fluminalis, Anodonta woodiana) in Hungary. The higher density presented by Pisidium subtruncatum, P. supinum, P. henslowanum and C. fluminea suggests that these species may have a key role in this ecosystem. Three different faunal groups were distinguished but no significant temporal change was detected. The lowest density and diversity with two species (P. casertanum and P. personatum) occurred in streams. The highest density and diversity was found in the River Ipoly, in the side arms of the Danube and in the main arm of the Danube with sand and silt substrate, being dominated by P. subtruncatum and P. henslowanum. Moderate density and species richness were observed in the main arm of the Danube with pebble and stone substrate, being dominated by C. fluminea and S. rivicola. Ten environmental variables were found to have significant influence on the distribution of bivalves, the strongest explanatory factors being substrate types, current velocity and sedimentological characteristics.The project was financially supported by the Hungarian Scientific Research Fund under the contract No. OTKA T/046180. Special thanks to the DanubeIpoly National Park for the help in field work.info:eu-repo/semantics/publishedVersio

    An Ultra-Low Background PMT for Liquid Xenon Detectors

    Get PDF
    Results are presented from radioactivity screening of two models of photomultiplier tubes designed for use in current and future liquid xenon experiments. The Hamamatsu 5.6 cm diameter R8778 PMT, used in the LUX dark matter experiment, has yielded a positive detection of four common radioactive isotopes: 238U, 232Th, 40K, and 60Co. Screening of LUX materials has rendered backgrounds from other detector materials subdominant to the R8778 contribution. A prototype Hamamatsu 7.6 cm diameter R11410 MOD PMT has also been screened, with benchmark isotope counts measured at <0.4 238U / <0.3 232Th / <8.3 40K / 2.0+-0.2 60Co mBq/PMT. This represents a large reduction, equal to a change of \times 1/24 238U / \times 1/9 232Th / \times 1/8 40K per PMT, between R8778 and R11410 MOD, concurrent with a doubling of the photocathode surface area (4.5 cm to 6.4 cm diameter). 60Co measurements are comparable between the PMTs, but can be significantly reduced in future R11410 MOD units through further material selection. Assuming PMT activity equal to the measured 90% upper limits, Monte Carlo estimates indicate that replacement of R8778 PMTs with R11410 MOD PMTs will change LUX PMT electron recoil background contributions by a factor of \times1/25 after further material selection for 60Co reduction, and nuclear recoil backgrounds by a factor of \times 1/36. The strong reduction in backgrounds below the measured R8778 levels makes the R11410 MOD a very competitive technology for use in large-scale liquid xenon detectors.Comment: v2 updated to include content after reviewer comments (Sep 2012

    LUXSim: A Component-Centric Approach to Low-Background Simulations

    Get PDF
    Geant4 has been used throughout the nuclear and high-energy physics community to simulate energy depositions in various detectors and materials. These simulations have mostly been run with a source beam outside the detector. In the case of low-background physics, however, a primary concern is the effect on the detector from radioactivity inherent in the detector parts themselves. From this standpoint, there is no single source or beam, but rather a collection of sources with potentially complicated spatial extent. LUXSim is a simulation framework used by the LUX collaboration that takes a component-centric approach to event generation and recording. A new set of classes allows for multiple radioactive sources to be set within any number of components at run time, with the entire collection of sources handled within a single simulation run. Various levels of information can also be recorded from the individual components, with these record levels also being set at runtime. This flexibility in both source generation and information recording is possible without the need to recompile, reducing the complexity of code management and the proliferation of versions. Within the code itself, casting geometry objects within this new set of classes rather than as the default Geant4 classes automatically extends this flexibility to every individual component. No additional work is required on the part of the developer, reducing development time and increasing confidence in the results. We describe the guiding principles behind LUXSim, detail some of its unique classes and methods, and give examples of usage. * Corresponding author, [email protected]: 45 pages, 15 figure

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    On the progenitor of binary neutron star merger GW170817

    Get PDF
    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∌40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∌2 kpc away from the galaxy's center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy's star formation history, provided the stellar populations are older than 1 Gyr
    • 

    corecore