609 research outputs found

    Build orientation optimization problem in additive manufacturing

    Get PDF
    Additive manufacturing (AM) is an emerging type of production technology to create three-dimensional objects layer-by-layer directly from a 3D CAD model. AM is being extensively used by engineers and designers. Build orientation is a critical issue in AM since it is associated with the object accuracy, the number of supports required and the processing time to produce the object. Finding the best build orientation in the AM will reduced significantly the building costs and will improve the object accuracy. This paper presents an optimization approach to solve the part build orientation problem considering the staircase effect, support area characteristics and the build time. Two global optimization methods, the Electromagnetism-like and the Stretched Simulated Annealing algorithms, are used to study the optimal orientation of four models. Preliminary experiments show that both optimization methods can effectively solve the build orientation problem in AM, finding several global solutions.This work has been supported and developed under the FIBR3D project - Hybrid processes based on additive manufacturing of composites with long or short fibers reinforced thermoplastic matrix (POCI-01-0145-FEDER-016414), supported by the Lisbon Regional Operational Programme 2020, under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This work was also supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Interferometry of Direct Photons in Central 280Pb+208Pb Collisions at 158A GeV

    Full text link
    Two-particle correlations of direct photons were measured in central 208Pb+208Pb collisions at 158 AGeV. The invariant interferometric radii were extracted for 100<K_T<300 MeV/c and compared to radii extracted from charged pion correlations. The yield of soft direct photons, K_T<300 MeV/c, was extracted from the correlation strength and compared to theoretical calculations.Comment: 5 pages, 4 figure

    Axial Vector Coupling Constant in Chiral Colour Dielectric Model

    Full text link
    The axial vector coupling constants of the β\beta decay processes of neutron and hyperon are calculated in SU(3) chiral colour dielectric model (CCDM). Using these axial coupling constants of neutron and hyperon, in CCDM we calculate the integrals of the spin dependent structure functions for proton and neutron. Our result is similar to the results obtained by MIT bag and Cloudy bag models.Comment: 9 pages, Latex file, no figure, to appear in Phys. Rev.

    A nonsense mutation in mouse tardbp affects TDP43 alternative splicing activity and causes limb-clasping and body tone defects.

    Get PDF
    Mutations in TARDBP, encoding Tar DNA binding protein-43 (TDP43), cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Attempts to model TDP43 dysfunction in mice have used knockouts or transgenic overexpressors, which have revealed the difficulties of manipulating TDP43, whose level is tightly controlled by auto-regulation. In a complementary approach, to create useful mouse models for the dissection of TDP43 function and pathology, we have identified a nonsense mutation in the endogenous mouse Tardbp gene through screening an N-ethyl-N-nitrosourea (ENU) mutant mouse archive. The mutation is predicted to cause a Q101X truncation in TDP43. We have characterised Tardbp(Q101X) mice to investigate this mutation in perturbing TDP43 biology at endogenous expression levels. We found the Tardbp(Q101X) mutation is homozygous embryonic lethal, highlighting the importance of TDP43 in early development. Heterozygotes (Tardbp(+/Q101X) ) have abnormal levels of mutant transcript, but we find no evidence of the truncated protein and mice have similar full-length TDP43 protein levels as wildtype littermates. Nevertheless, Tardbp(+/Q101X) mice have abnormal alternative splicing of downstream gene targets, and limb-clasp and body tone phenotypes. Thus the nonsense mutation in Tardbp causes a mild loss-of-function phenotype and behavioural assessment suggests underlying neurological abnormalities. Due to the role of TDP43 in ALS, we investigated potential interactions with another known causative gene, mutant superoxide dismutase 1 (SOD1). Tardbp(+/Q101X) mice were crossed with the SOD1(G93Adl) transgenic mouse model of ALS. Behavioural and physiological assessment did not reveal modifying effects on the progression of ALS-like symptoms in the double mutant progeny from this cross. In summary, the Tardbp(Q101X) mutant mice are a useful tool for the dissection of TDP43 protein regulation, effects on splicing, embryonic development and neuromuscular phenotypes. These mice are freely available to the community

    Event-by-Event Fluctuations in Particle Multiplicities and Transverse Energy Produced in 158.A GeV Pb+Pb collisions

    Get PDF
    Event-by-event fluctuations in the multiplicities of charged particles and photons, and the total transverse energy in 158A\cdot A GeV Pb+Pb collisions are studied for a wide range of centralities. For narrow centrality bins the multiplicity and transverse energy distributions are found to be near perfect Gaussians. The effect of detector acceptance on the multiplicity fluctuations has been studied and demonstrated to follow statistical considerations. The centrality dependence of the charged particle multiplicity fluctuations in the measured data has been found to agree reasonably well with those obtained from a participant model. However for photons the multiplicity fluctuations has been found to be lower compared to those obtained from a participant model. The multiplicity and transverse energy fluctuations have also been compared to those obtained from the VENUS event generator.Comment: To appear in Physical Review C; changes : more detailed discussion on errors and few figures modifie

    Chiral Symmetry and the Nucleon's Vector Strangeness Form Factors

    Get PDF
    The nucleon's strange-quark vector current form factors are studied from the perspective of chiral symmetry. It is argued that chiral perturbation theory cannot yield a prediction for the strangeness radius and magnetic moment. Arrival at definite predictions requires the introduction of additional, model-dependent assumptions which go beyond the framework of chiral perturbation theory. A variety of such model predictions is surveyed, and the credibility of each is evaluated. The most plausible prediction appears in a model where the unknown chiral counterterms are identified with tt-channel vector meson exchange amplitudes. The corresponding prediction for the mean square Dirac strangeness radius is rs2=0.24\langle r_s^2\rangle = 0.24 fm2^2, which would be observable in up-coming semileptonic determinations of the nucleon's strangeness form factors.Comment: LaTex 31 pages, four figures available from authors

    Working Group Report: Heavy-Ion Physics and Quark-Gluon Plasma

    Get PDF
    This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of Quark-Gluon Plasma believed to have created in heavy-ion collisions and in early universe are reported.Comment: 20 pages, 6 eps figures, Heavy-ion physics and QGP activity report in "IX Workshop on High Energy Physics Phenomenology (WHEPP-09)" held in Institute of Physics, Bhubaneswar, India, during January 3-14, 2006. To be published in PRAMANA - Journal of Physics (Indian Academy of Science

    Pion Freeze-Out Time in Pb+Pb Collisions at 158 A GeV/c Studied via pi-/pi+ and K-/K+ Ratios

    Get PDF
    The effect of the final state Coulomb interaction on particles produced in Pb+Pb collisions at 158 A GeV/c has been investigated in the WA98 experiment through the study of the pi-/pi+ and K-/K+ ratios measured as a function of transverse mass. While the ratio for kaons shows no significant transverse mass dependence, the pi-/pi+ ratio is enhanced at small transverse mass values with an enhancement that increases with centrality. A silicon pad detector located near the target is used to estimate the contribution of hyperon decays to the pi-/pi+ ratio. The comparison of results with predictions of the RQMD model in which the Coulomb interaction has been incorporated allows to place constraints on the time of the pion freeze-out.Comment: 9 pages, 12 figure

    Suppression of High-p_T Neutral Pion Production in Central Pb+Pb Collisions at sqrt{s_NN} = 17.3 GeV Relative to p+C and p+Pb Collisions

    Get PDF
    Neutral pion transverse momentum spectra were measured in p+C and p+Pb collisions at sqrt{s_NN} = 17.4 GeV at mid-rapidity 2.3 < eta_lab < 3.0 over the range 0.7< p_T < 3.5 GeV/c. The spectra are compared to pi0 spectra measured in Pb+Pb collisions at sqrt{s_NN} = 17.3 GeV in the same experiment. For a wide range of Pb+Pb centralities (N_part < 300) the yield of pi0's with p_T > 2 GeV/c is larger than or consistent with the p+C or p+Pb yields scaled with the number of nucleon-nucleon collisions (N_coll), while for central Pb+Pb collisions with N_part > 350 the pi0 yield is suppressed.Comment: 5 pages, 4 figure
    corecore