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Abstract. Additive manufacturing (AM) is an emerging type of pro-
duction technology to create three-dimensional objects layer-by-layer di-
rectly from a 3D CAD model. AM is being extensively used by engineers
and designers.

Build orientation is a critical issue in AM since it is associated with
the object accuracy, the number of supports required and the processing
time to produce the object. Finding the best build orientation in the AM
will reduced significantly the building costs and will improve the object
accuracy.

This paper presents an optimization approach to solve the part build
orientation problem considering the staircase effect, support area charac-
teristics and the build time. Two global optimization methods, the Elec-
tromagnetism-like and the Stretched Simulated Annealing algorithms,
are used to study the optimal orientation of four models.

Preliminary experiments show that both optimization methods can effec-
tively solve the build orientation problem in AM, finding several global
solutions.

Keywords: Design Tools, Additive Manufacturing, 3D printing, Opti-
mization, Build Orientation

1 Introduction

Traditional manufacturing methods involve a solid block of material being carved,
or shaped, into the desired product, where block parts are being successively re-
moved in different ways.

Additive manufacturing (AM) has emerged in the last decades becoming
an alternative to the traditional subtractive manufacturing. It is a technology
that builds 3D objects by adding ultrathin layers of material, one by one, for
fabricating the desired product.

Additive manufacturing processes involve the use of three-dimensional (3D)
computer-aided design (CAD) data to create physical models. One of the greatest
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benefits of AM is the production of a wide range of shapes. Currently, AM is
being used to make end-use products in aircraft, dental restorations, medical
implants, automobiles, and even fashion products [7].

One of the current challenges faced by manufacturing industries is the reduc-
tion of prototype model development time through adoption of rapid prototyping
technologies (techniques of fabricating a prototype model from a CAD file) in
particular using the additive manufacturing process.

The performance of a rapid prototyping technology depends on the way parts
are oriented on the build platform. Therefore, each part should be appropriately
oriented to achieve better surface quality and either minimal support structure
or lower build time [3]. Besides that, these strategies result in a process more
environmental friendly since it will require less energy consumption and material
waste.

A number of studies have been carried out in the problem of selecting a
building direction given a 3D CAD model. A proposal based on the determina-
tion of the optimal part orientation when minimizing the build cost can be seen
in [I]. Authors used various criteria like stair step error, build height, volume of
supports, stability of object, among others, to determine the optimal part build
orientation for any rapid prototyping process. Lan et al. [8] studied the best
build orientation of a model part considering the surface quality, build time and
the complexity of the support structure. Thrimurthulu et al. and Canellidis et
al. [314] show methodologies addressing the optimal part orientation taking into
account the surface quality, evaluate the surface roughness and build deposition
time.

A presentation of methodologies for optimizing the build orientation problem
based on the minimum volumetric error can be found in [9]. A part orientation
optimization model using genetic algorithm that considers the build time, mate-
rial usage, surface finish, interior geometry, strength characteristics and related
parameters is presented in [15].

The literature suggests criteria to be considered for optimal build orientation
such as the build height, staircase effect, volume of support structures and part
area in contact with support structures [45IT2/15].

In this study, we aim to analyse the behaviour of two multi-global optimiza-
tion methods, named Electromagnetism-Like and Stretched Simulated Anneal-
ing algorithms, to solve the build orientation optimization problem in additive
manufacturing.

This paper is organized as follows. Section [2] presents the build orientation
optimization model as well as the mathematical formulation of the optimization
problem. In Sect. [3] the optimizers used to solve the build orientation optimiza-
tion problem are briefly described. The description of the models that will be
analysed are presented in Sect.[d Section [] presents the results of the numerical
experiments and Sect. [f] contains the conclusions of the present study and future
work.



2 Build Orientation Optimization

In this section the build orientation model as well as the mathematical formula-
tion of the build orientation optimization problem are presented.

2.1 Build Orientation Model

The surface finish of an object obtained through additive manufacturing process
is highly important. Different measures to determine the best build orientation
for an improvement of the surface finish can be considered taking into account
factors as the part accuracy, building time, structure support and part stability.
The general orientation characteristics for assessing the optimal build orienta-
tion include: the height of the part in the build direction; the total volume of
support material used; the total area of contact of the object with the external
support structure; the quality of selected faces that are subjected to the stair-
case effect and are in contact with the supports. These orientation characteristics
can be individually used to rank a selection of possible orientations according to
minimum build height, minimum volume of support structures, minimum area
in contact with extra support structures or maximum accuracy of total surface
area (staircase effect) or selected facets [BUSIT5]. The best selection of the build
orientation model will improve the surface accuracy of the object, minimize the
supports needed and the production time, and, consequently, the build costs [I].

A major source of structure inaccuracy is due to the staircase effect. The
staircase effect is used as the basis for developing an accuracy measure. The
maximum deviation from layered part to the CAD surface measured in the nor-
mal direction to CAD surface is known as the cusp height, H, (see Fig. [1)).

Model surface

Part surface

Fig. 1. Cusp height.

This depends on the angle 8 formed by the slicing direction d and the model
surface normal, and on the layer thickness, ¢. Thicker layers and/or higher values
of cos(f) will produce larger values for cusp height and consequently a more
inaccurate surface will appear [I]. The cusp height is given by H. = tcos(f).
By using cusp height to measure the structure accuracy, the surface quality can



be determined from the object geometry, build direction and layer thickness.
When the normal model surface is close to be collinear (8 = 0) with the slicing
direction, the volumetric difference (difference between CAD model and the slice
volume) is very high, giving a low surface smoothness.

However if the normal of the model surface is close to be perpendicular to
the slicing direction (8 ~ 90°) the volumetric difference is very low, giving a
high surface smoothness. In this context, an algorithm that slices the model
along the slicing direction d can use the volumetric error to maximize the part
smoothness. The volumetric error, V E, to be minimized in each layer stem from
staircase effect is given by

t2|d . nj|Aj
VE = Z — (1)
J
where ¢ is the slicing height, n; is the unit normal vector of the j triangle facet,
A; is its area, d is the unit normal vector of the building direction [16].
Another measure related to the optimal build orientation is the quantity of
supports used, measured by the support area or support volume. The computa-
tion of the support volume is very complex. If the shape of the object is convex,
the support volume is the volume of the region lying between the object solid of
the part and the platform, the vertical polyhedral cylinder which is bounded be-
low by the platform and above by the object facets whose outward normal point
downward. But if the product shape is nonconvex, the problem is more complex,
since the supports for some faces may actually be attached to other facets instead
of to the platform [I6]. The quantity of support area affects post-processing and
surface finish. Thus, support area is the total area of the downward-facing facets.
Note that the support area have more significant impact on the object accuracy
than the support volume. So the part building direction optimization accounts
for the support area [I6]. The support area, SA, to be minimized is expressed

as follows
SA="Ajld-n;[ (2)
J

where §, a threshold function, is given by

5= 1ifd~nj<0
“ 10 if d~nj>0.

Another measure that could be used to determine the optimal part build
orientation is the build time without compromising the surface quality.

Canellidis et al. [3] considered that the build time includes the time required
to manufacture the object as well as the time required for support removal and
surface finishing. The major structure of the overall build time is the creation
time of a designed object, whereas the time required for removal of supports and
surface finishing is only a minor fraction of build time. It should be noted that
different authors considered different definitions for the build time. For example,
Lan et al. [§] only considered the build time as the time for creating a designed



object while Zhao [16] considered the build time as the scanning time and the
preparation time. The scanning time includes solid scanning time, contour scan-
ning time and support scanning time, where the solid and contour scanning times
are independent of the part building direction and the support scanning time
depends on the volume of supports. The preparation time includes the time re-
quired to move down the platform during the re-coating, the scraping time and
other preparation times. Moreover, the preparation time is dependent on the
total number of layers, while the number of layers is dependent on the height
of part building direction. Therefore, minimizing the height of the part build-
ing direction and, consequently, the total number of layers can reduce the part
building time. The part building time, BT, to be minimized can be expressed
as follows

BT =max(d-vi,d-va,...,dv,) —min(d - v1,d - va,...,d-vy,) (3)

where v; are the vertex triangle facets.

2.2 Problem Formulation

Based on the part build orientation, the optimization problem will minimize
the volumetric error, supporting area and build time defined in equations ([1)—
. We aim to compute the optimal slicing direction d, which is a normalized
vector (i.e. ||d|| = 1). An equivalent mathematical formulation is to compute the
rotation along the z and y axis. In our case we considered d = (0,0,1)7 as the
slicing direction after a rotation along (x,y) angles, where each angle is between
0° and 180°. Thus, the optimization problem is given by

min f(z,y)
st. 0<z<180 (4)
0<y<180

where the objective function to be minimized, f(z,y), is given by for the
volumetric error, for the support area and for the part building time.

3 Optimizers

In this section, two global optimization methods used to solve the build ori-
entation problem are presented. First, the Electromagnetism-like algorithm is
briefly described followed by a description of the Stretched Simulated Annealing
algorithm.

3.1 Electromagnetism-Like Algorithm

The Electromagnetism-like (EM) algorithm, developed by Birbil and Fang [2], is
a population-based stochastic search method for bound constrained global op-
timization problems that mimics the behaviour of electrically charged particles.



The method uses an attraction-repulsion mechanism to move a population of
points towards optimality.

The EM algorithm simulates the electromagnetism theory of physics by con-
sidering each point in the population as an electrical charge that is released to
the space. The charge of each point is related to the objective function value
and determines the magnitude of attraction of the point over the others in the
population. The better the objective function value, the higher the magnitude
of attraction. The charges are used to find a direction for the movement of each
point. The regions that have higher attraction will signal other points to move
towards them. In addition, a repulsion mechanism is also introduced to explore
new regions for even better solutions [2].

The EM algorithm comprises four main procedures: “Initialization”, “Com-
pute Force”, “Move Points” and “Local Search”. The main steps of the EM
algorithm are presented in the Algorithm

Initialization
while stopping criterion in not satisfied do
Compute Force

Move Points
end

Algorithm 1: EM algorithm

The “Initialization” procedure starts by randomly generating a sample of
points. Each point is uniformly distributed between the lower and upper bounds.
Then, the objective function value for each point is calculated and the best
point of the population, 2°¢%*, is identified as well as its corresponding objective
function value fbst.

In the “Compute Force” procedure, each particle charge that determines the
power of attraction or repulsion for each point is calculated. In this way the
points that have better objective function values possess higher charges. After
the charge calculation, the total force vector on each point is then calculated by
adding the individual component forces between any pair of points.

The “Move Points” procedure uses the total force vector to move each point
in the direction of the force by a random step length A. The best point, z%¢¢, is
not moved. To maintain feasibility, the force exerted on each point is normalized
and scaled by the allowed range of movement towards the lower bound or the
upper bound.

A fully description of the EM algorithm can be found in [13] as well as the
used code.

3.2 Stretched Simulated Annealing Algorithm

Stretched Simulated Annealing (SSA) algorithm is a multilocal programming
method that solves bound constrained optimization problems point-to-point.



This stochastic method combines Simulated Annealing algorithm [6] with a
stretching function technique [10].

SSA solves a sequence of global optimization problems in order to compute
the global/local solutions of the original optimization problem. In each iteration,
a new global optimization problem is generated combining the original objective
function and the stretching function technique.

The mathematical formulation of the global optimization problem is as fol-
lows:

min @;(z) = {QAS(‘T) ifxEVeJ‘(l';),jE{l,...,N} 5)

a<z<b f(x) otherwise

where V_; (x;") represents the neighborhood of the solution z; with a ray el
The ¢(z) function is defined as

dafsign(f(x) — f(z})) + 1]
2 tanh(k(p(x) — (Z;(xj))

¢(x) = o(x) +

and

$(a) = f(x) + %le — x| [sign(f(z) = f(z5)) +1] (7)

where §1, 2 and k are positive constants and N is the number of minimizers
already detected.
The main steps of the SSA algorithm are presented in the Algorithm [2

Initialization

while stopping criterion in not satisfied do
Calculate a global solution ] of problem
Calculate V_; (x7)

end

Algorithm 2: SSA algorithm

To solve the global optimization problems (5)) the simulated annealing method
is used [6]. The SSA algorithm stops when no new optimum is identified after
consecutive runs.

Details about the algorithm and its implementation can be found in [I1].

4 Models Description

In this section, we present the 3D CAD models that will be used in our numerical
testing of the global optimization algorithms.

First, CAD models are converted into STL (STereoLithography) that is the
standard file type used by most common 3D printing file formats. STL files



describe only the surface geometry of a three-dimensional object without any
representation of color, texture or other common CAD model attributes. Fig-
ures [2H5] show the STL files of the models that will be used in the present study.

4

Fig. 2. Rear panel fixed 3D printing file. Fig. 3. Air duct 3D printing file.

Fig. 4. Rocket shot 3D printing file. Fig. 5. 45 degree short 3D printing file.

The STL file format approximates the surfaces of a solid model by a polyhe-
dral representation of a 3D object using triangular facets. The more complex the
surface is more triangles are produced. Figure [2] shows a rear panel to replace
the plexiglass panel on the rear of the Rostock Max v2 (a 3D printer) that has
vents on either side. The rear panel is of a difference size of the side panels,
but the side panels for left and right are the same. It was defined using 3008
triangles. Figure [3]shows an air duct splitter of 50mm designed to direct the flow
of two air vents into an air intake or to split the air from one into two places.
It was defined using 6024 triangles. Figure [4| shows a rocket shot shaped cup. It
was defined using 10616 triangles. Figure [5| shows a fan duct extension with 45
degree short radius elbow that was defined using 66888 triangles.



5 Numerical Experiments

In this section, a practical comparison of two optimizers, the EM and SSA des-
cribed in Sect. [3} to solve the build orientation problem @ is shown.

The numerical experiments involve the optimization of the build orientation
problem using three different measures: the volumetric error, the support area
and the part building time. The models used in the experiments are the ones
presented in Sect. 4] namely the Rear panel, Air duct, Rocket shot and 45 degree
short.

The numerical experiments were carried out on a PC Intel Core 2 Duo Pro-
cessor E7500 with 2.9GHz and 4Gb of memory RAM. The algorithm was coded
in MATLAB Version 9.2 (R2017a).

5.1 Details of Implementation

The stopping criterion used for each optimizer was the maximum number of
function evaluations set to 500. Since the presented global methods are stochas-
tic, 20 runs were performed for each problem. The population size used in the
EM algorithm was set to 10.

Before optimization, the objects considered a slicing along the Z-axis with
5mm height, resulting in 36 slices for the Rear panel fixed problem (see Fig. @
Considering the same slicing, it was obtained 16 slices for the Rocket shot (see
Fig. and 25 slices for the 45 degree short problem (see Fig. E[) For the Air
duct problem a slicing along the Z-axis with 2mm height was used resulting in
49 slices as shown at Fig. [7]
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Fig. 6. Rear panel fixed with 5mm of Fig. 7. Air duct with with 2mm of layer
layer height. height.



50 80

40

30

20

-20 -60

-30 -80

40 . . . n L L L , 100
-40 -30 -20 -10 0 10 20 30 40 -150

Fig. 8. Rocket shot with 5mm of layer Fig. 9. 45 degree short with 5mm of layer
height. height.

5.2 Comparative Results

In this section, we report the numerical results obtained with the Electromag-
netism-like and the Stretched Simulated Annealing algorithms.

In the following, we describe the numerical experiences to solve the build
orientation problem using the different measures:

— exp_V E - denotes optimizing problem with f(x,y) = VE, the volumetric
error given by ;

— exp_SA - denotes optimizing problem @D with f(z,y) = SA, the support
area given by ;

— exp_BT - denotes optimizing problem (@) with f(x,y) = BT, the build time
given by (3).

In order to analyse the behaviour of the two global optimization methods
in solving the build orientation problem using the different measures, four mo-
dels were tested: Rear panel fixed, Air duct, Rocket shot and 45 degree short
(presented in the Sect. [4).

Table [1] presents the numerical solutions, (x,y) in degrees, obtained by the
EM and SSA algorithms for each model considered. All different solutions found
by the global methods are presented in the Table [T}
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The behaviour of the both global optimization methods is very satisfactory
since they solve efficiently all the optimization problems, needing few seconds
to find the solutions. In general, the solutions found by the methods are very
similar and the methods were capable to find more than one solution in each
optimization problem.

The EM algorithm found more solutions in two cases (Air Duct & exp BT
and Rocket Shot & exp_V E) when compared with SSA algorithm. In some situ-
ations both algorithm identified different solutions (45 Degree Short & exp_BT).

To evaluate the impact of the different measures to identify the (x,y) on
the 3D printer, Fig. and [[2] present the build orientation provided by
the algorithms when optimizing the build orientation problem of the Rear Panel
Fixed model.

Fig. 10. Rear Panel Fixed Fig.11. Rear Panel Fixed Fig.12. Rear Panel Fixed
of exp.VE and exp_SA for of exp .V FE and exp_SA for of exp_BT (0, 135).
(90,0). (90, 180).

The obtained solutions are consistent with the main idea of the measures
definition, since in the cases of exp_V E and exp_S A the objective is to minimize
volumetric error and the support area, respectively.

In the case of the measure exp_BT, where the objective is to minimize the
building time, the optimal solution x = 0 and y = 135 is consistent with the
height of the structure building direction. Note that when the orientation gives
the solution of (180, 45) the representation of the object is similar to Fig.

Next we will present the figures related to build orientation problem of the
Air duct model. Note that the obtained solutions for exp_VE and exp_SA are
the same, thus the figures of the four solutions are shown in Fig. [13| and

As expected, the algorithms found some solutions that have the same build
orientation. It is the case of the (180,180) or (0,0) for the minimization of the
volumetric error, exp_V E, and similar situations happen in the optimization of
the support area and build time, experiments exp_SA and exp_BT (see Fig.
As previously mentioned, the minimization of the total number of layers can re-
duce the part building time. Thus the optimal solutions of exp_BT are consistent
regarding the structure building direction.

Next we will present the figures related to build orientation problem of the
Rocket Shot model. Note that the obtained figures related to experiment exp_ V E
when the solution angles are (0,0) and (180, 180) are the same (see Fig. as



Fig.13. Air duct of
exp_-VE and exp.SA for
(180, 180) or (0,0).

Fig.14. Air duct of
exp_-VE and exp.SA for
(0,180) or (180,0).

Fig.15. Air duct of
exp_BT for (90,90) or
(0,90).

well as for (0,180) and (180, 0) (see Fig. [I7)). The solutions obtained by exp_BT

are presented in Fig. [1§

Fig.16. Rocket Shot of
erp.VE and exrp.SA for
(0,0) or (180,180).

Fig.17. Rocket Shot of
exp.VE for (0,180) and
(180, 0).

Fig. 18. Rocket Shot of
exp_BT for (90,135) or
(90, 45).

Regarding the solution angles (0,0) and (180, 180) seems to be the best di-
rection to optimize the support area (see Fig. [16)) since the solutions (0, 180) and
(180, 0) have higher values of the objective function (see Table [f).

Fig.19. 45 Degree Short
of exp_V E and exp_SA for
(90, 135).

Fig. 20. 45 Degree Short
of exp_BT for (180,0) or
(180, 180).

88 & o 8 B

Fig.21. 45 Degree Short
of exp_BT for (0,0) or
(0,180).



The build orientation directions produced by the global optimization algo-
rithms for the 45 Degree Short model are depicted in Fig. The numerical
results indicate that different angles x and y may result in the same direction of
construction as had already occurred for the other models.

6 Conclusions and Future Work

In this paper, it is presented a comparative study of two different global opti-
mization methods, named the Electromagnetism-like and the Stretched Simu-
lated Annealing algorithms, to solve the build orientation optimization problem.
Numerical experiments have been carried out to analyse the behaviour of the
EM and SSA algorithms when determining the best orientation to improve the
surface accuracy of four 3D CAD models through three different measures, the
volumetric error, the support area and the build time.

With this comparative study, we are able to conclude that both methods
solve efficiently the optimization problem identifying different solutions in each
model/measure. So, it is possible to conclude that for each presented model it
is possible to build it with different orientations obtaining the same measure
evaluation.

For future work we intend to solve the build orientation problem as a multi-
objective problem and consider different and more complex models.
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